2015 Che2410 - Homework Assignment \#1
 Due on Sept. 22 ${ }^{\text {nd }}$ at $4: 30 \mathrm{pm}$

1. Classify the following differential equations. State whether they are linear/nonlinear, ordinary/partial, homogeneous/inhomogeneous and state their order. If applicable, state whether the equation is elliptic, hyperbolic, or parabolic, and under what conditions (if any).
a) $f^{\prime \prime \prime}+f^{\prime}=0$
b) $\frac{d y}{d x}+x^{2} \frac{d^{2} y}{d x^{2}}=\frac{1}{x}$
c) $f_{t} f_{x}=1$
d) $y(x)+y^{\prime}(x)+x y^{\prime \prime}(x)=0$
e) $\left(x^{2}+4\right) d y=(2 x-8 x y) d x$
f) $2 f_{x x}+4 f_{x y}-f_{y y}+f_{x}=0$
g) $x \frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y}{\partial t^{2}}+2 \frac{\partial^{2} y}{\partial x \partial t}=1$
h) $\nabla^{2} \phi=0$
2. Solve the following $1^{\text {st }}$ order differential equations:
a) $x^{2} \frac{d f}{d x}+4 f=2$
b) $\left(x^{2}+4\right) \frac{d y}{d x}+8 x y=2 x$
3. Derive the formula for the $6^{\text {th }}$ order central difference operator. Determine the leading order term in the truncation error.
4. Derive the $4^{\text {th }}$ order approximation to the second derivative. Determine the leading order term in the truncation error.
5. Derive the formulas for the $2^{\text {nd }}$ and $3^{\text {rd }}$ order forward differencing.
6. Consider the equation:

$$
f_{t}=f_{x}
$$

Show that the MacCormack scheme is algebraically equivalent to the Lax-Wendroff scheme.

