
2015 Che2410 – Homework Assignment #5 

Due on Dec. 4th at midnight 

1. Find solutions that are valid for the following differential equation near 𝑥 = 0, 

𝑥2𝑦′′ −
1

2
𝑥𝑦′ +

1

2
(𝛼 + 𝛽𝑥)𝑦 = 0 

 a) Find solutions when 𝛽 = 0 and 𝛼 ≤ 9/8. 

 𝑦(𝑥) = 𝐴0
+𝑥𝑟+ + 𝐴0

−𝑥𝑟− where 𝑟 =
3±√9−8𝛼

4
 

 If 𝛼 =
9

8
 then 𝑟+ = 𝑟− and so we need a different 2nd linearly independent solution: 

 𝑦(𝑥) = 𝐴0
+𝑥𝑟 + 𝐵𝑥𝑟 ln 𝑥  

b) Use Frobenius theory to obtain the general solution for 𝛼 = 1. Write the power series for 

𝑦+𝑎𝑛𝑑 𝑦− in terms of elementary functions.  

Substituting 𝛼 = 1 we get, 

𝑥2𝑦′′ −
1

2
𝑥𝑦′ +

1

2
(1 + 𝛽𝑥)𝑦 = 0 

 which gives us the following coefficients for the Frobenius Theorem: 

 𝑅0 = 1, 𝑃0 = −
1

2
, 𝑄0 =

1

2
, 𝑄1 =

1

2
Β 

 with all higher coefficients being zero. The indicial equation in our case is: 

 𝑠(𝑠 − 1) −
1

2
𝑠 +

1

2
= 0 → 𝑠+ = 1, 𝑠− =

1

2
 

𝑠+ − 𝑠− =
1

2
 which is NOT a positive integer, so we know there are two linearly independent 

power series solutions 

Simplifying the general recurrence formula gives us: 

𝐴𝑛
+ =

−β

2𝑛2 + 𝑛
𝐴𝑛−1

+ ,  and  𝐴𝑛
− =

−β

2𝑛2 − 𝑛
𝐴𝑛−1

−  

 If we play around a bit with the simplified recurrence formula, we can begin to see a pattern: 

𝐴𝑛
+ =

−β

2𝑛2 + 𝑛
𝐴𝑛−1

+  

=
−2β

(2𝑛 + 1)2𝑛
𝐴𝑛−1

+  

=
(−2β)(−2β)

(2𝑛 + 1)2𝑛(2𝑛 − 1)(2𝑛 − 2)
𝐴𝑛−2

+  

=
(−2β)(−2β)(−2β)

(2𝑛 + 1)2𝑛(2𝑛 − 1)(2𝑛 − 2)
𝐴𝑛−3

+  

= ⋯ 

=
(−2𝛽)𝑛

(2𝑛 + 1)!
𝐴0

+ 



Similarly, we get for the 𝐴𝑛
− coefficients, the following non-recurrence formula: 

𝐴𝑛
−  =

(−2𝛽)𝑛

(2𝑛)!
𝐴0

+ 

Then 

𝑦+(𝑥) = 𝐴0
+𝑥 ∑

(−2𝛽)𝑛

(2𝑛 + 1)!

∞

𝑛=0

𝑥𝑛 

which can be optionally represented using a sin function as: 

𝑦+(𝑥) = 𝐴0
+√

2𝛽

𝑥
sin √2𝛽𝑥 

and 

𝑦−(𝑥) = 𝐴0
−𝑥

1
2 ∑

(−2𝛽)𝑛

(2𝑛)!

∞

𝑛=0

𝑥𝑛 

which can be optionally represented using a cos function as: 

𝑦−(𝑥) = 𝐴0
−𝑥

1
2 cos √2𝛽𝑥 

c) Once you have the general solution from part (b), consider the limit of 𝛽 ≪ 1 perform a Taylor 

expansion in 𝛽 (i.e., find 𝑦+ = 𝑦0
+ + 𝛽𝑦+ and similarly for 𝑦−). How do the solutions in this 

limiting case compare to the solutions in part (a)? 

Writing out the first few terms of 𝑦+ give us: 

𝑦+(𝛽) = 𝐴0
+𝑥 (1 −

2𝛽

3!
𝑥 +

4𝛽2

5!
𝑥2 + ⋯ ) 

Taking the derivative with respect to 𝛽 gives us: 

𝑦′
+

(𝛽) = 𝐴0
+𝑥 (0 −

2

3!
𝑥 +

8𝛽

5!
𝑥2 + ⋯ ) 

 𝐴𝑡 𝛽 = 0, we get: 

 𝑦+(𝛽 = 0) = 𝐴0
+𝑥, and 𝑦+

′ (𝛽 = 0) = 𝐴0
+ −2

3!
𝑥2 

So, a Taylor series in 𝛽 for 𝑦+(𝛽) looks like: 

 𝑦+(𝛽) ≈ 𝑦+(𝛽 = 0) + 𝛽𝑦′
+

(𝛽 = 0) +
𝛽2𝑦+

′′(𝛽=0)

2!
+ ⋯ 

Except that we ignore terms that have 𝛽2 because 𝛽 ≪ 1… leave us with just the first two terms. 

Plugging in the above gives us: 

𝑦+(𝛽) ≈ 𝐴0
+𝑥 + 𝛽𝐴0

+
−2

3!
𝑥2 = 𝐴0

+𝑥 (1 −
2𝛽

3!
𝑥) 

 and similarly for 𝑦−(𝛽) = 𝐴0
−𝑥

1

2(1 − 𝛽𝑥) 



Thus, in the limit as 𝛽 → 0, our solutions in this case are exactly the same as in part (a). (Provided 

one substitutes 𝛼 = 1 into the solution in part (a). 

2. Consider the equation: 

𝑦′′ − 𝑥𝑦 = 0 

This equation is called Airy’s equation. It is important for modeling quantum-mechanical 

particles hitting walls defined by smooth potentials. Use Frobenius theory to obtain the general 

solution this equation. The two homogeneous solutions are called Airy functions and cannot be 

expressed in terms of other elementary functions. 

First determine the Frobenius Theorem coefficients: 

𝑅0 = 1, 𝑃0 = 0, 𝑄0 = 0, 𝑄1 = 0, 𝑄2 = 0, 𝑄3 = 1 

with all higher coefficients being equal to zero. 

Our indicial equations results in 𝑠+ = 1 and 𝑠− = 0. Since 𝑠+ − 𝑠− = 1 which is a positive 

integer, we do not know if we will have a 2nd linearly independent power series solution and will 

have to check. 

However, checking the 𝑛 = 1 case for the 𝐴𝑛
− series is straightforward because 𝑅1, 𝑃1, and 𝑄1 are 

all zero. Therefore 𝐴1
−(0) = 𝐴0

−(0 + 0 + 0) is satisfied, and 𝐴1
− is arbitrary and can be set to zero. 

Thus, we know we will have two linearly independent power series solutions. 

The simplified recurrence formula for 𝐴𝑛
+ is: 

𝐴𝑛
+ =

1

(𝑛 + 1)𝑛
𝐴𝑛−3

+  

and similarly,  

𝐴𝑛
− =

1

𝑛(𝑛 − 1)
𝐴𝑛−3

−  

writing out the non-recurrence formula in this case is tricky, because it is difficult to describe the 

pattern concisely. Any attempt to describe the pattern more concisely than in the regular 

recurrence formula is given full credit. 

The general solution is thus: 𝑦(𝑥) = 𝑥 ∑ 𝐴𝑛
+𝑥𝑛∞

𝑛=0 + ∑ 𝐴𝑛
−𝑥𝑛∞

𝑛=0  using the above recurrence 

formulas for the coefficients. 

  



3. Determine the two values of the constant 𝛼 for which all solutions of 

𝑥𝑦′′ + (𝑥 − 1)𝑦′ − 𝛼𝑦 = 0 

can be written as a power series (i.e., 𝑦 = 𝑥𝑠 ∑ 𝐴𝑛𝑥𝑛∞
𝑛=0  ). 

To apply Frobenius theory, first multiply the equation by x to get it into the right form. 

Then compute the R-P-Q coefficients: 

𝑅0 = 1, 𝑃0 = 1, 𝑃1 = 1, 𝑄0 = 0, 𝑄1 = −𝛼 

The indicial equation leads to 𝑠+ = 2 and 𝑠− = 0 so 𝑠+ − 𝑠− = 2 which is a positive integer, 

meaning we will need to test the 𝑛 = 2 case for the 𝐴𝑛
− coefficients. 

Testing the 𝑛 = 2 case leads to: 

𝐴2
−(0) = 𝐴1

−(1 − 𝛼) 

Since 𝐴1
− = −𝛼𝐴0

− we get: 
𝐴2

−(0) = 𝐴1
−(1 − 𝛼) = −𝐴0

−𝛼(1 − 𝛼) 

In order for this equation to be satisfied for any 𝐴0
−, we require that the RHS be zero, and so 𝛼 

must be either 0 or 1. 


