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1 PRELIMINARIES

In this course we will consider finite difference methods for time dependent partial
differential equations (PDEs). In many instances PDEs fall into three categories. We
first list these categories by giving examples from each.

• Hyperbolic equations, e.g. wave equations,

ut = ux or utt = uxx,

• Parabolic equations, e.g., the heat equation,

ut = uxx,

• Elliptic equations, e.g., Laplace equation,

uxx + uyy = 0.

In this course we will consider only hyperbolic and parabolic equations. These
equations are supplemented by initial conditions. They are initial value problems.
You specify u(0, x) and solve forward in time. Thus they are model the evolution of
some physical process, and time is one of the independent variables. They are also
called initial value problems (IVPs) since you have to give some initial data in order
to start the computation. (There is also a question of boundary conditions. This will
be discussed later.)

In contrast elliptic equations are purely boundary value problems. You are given
a domain together with conditions on the boundary, and have to solve in the interior.
Elliptic equations are intrinsically related to linear algebra techniques.
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Hyperbolic problems are characterized by waves. If we had the equation

ut = ux, u(0, x) = f(x), (1.1)

then the solution is
u(t, x) = f(t + x), (1.2)

as you can easily see by just differentiating. We can interpret this as a wave traveling
along the x−axis to the left. There is also a finite speed of propagation. Suppose for
example that f(x) is non-zero only in a small neighborhood of x = 0. Think of this
as a blip or a disturbance in free space. Then for any large negative x, say x = −a,
u(t, x) will be zero until t ' a. Thus, it takes a finite time before the disturbance
at x = 0 reaches x = −a. (In this case the speed of propagation of the disturbance
is 1). You can also see this by recognizing that (1.1) represents an equation in the
upper half of the t−x plane. (Think of a Cartesian plane with the x−axis horizontal
and the t−axis vertical.) Thus, u(t, x) is defined for points in the upper half plane.
If you now think of the line t = −x + x0 in this half plane then use the chain rule of
differentiation to differentiate u along this curve, (use dt/dx = −1 along this curve),
you can see that along this curve

du = utdt + uxdx = (−ut + ux)dx = 0.

Thus, du = 0 so that u does not change along this line. The equation (1.1) just
propagates the initial condition f(x0) along this line. (Of course, this can also be
seen from (1.2).) The line t = −x+x0 is called a characteristic curve for the equation
(1.1). We will discuss characteristics in more detail later.

In contrast parabolic problems are characteristic of dissipative phenomena, thus a
loss of energy to friction. They are also characterized by infinite speeds of propagation.
Consider for example the heat equation with trigonometric initial data,

ut = uxx, u(0, x) = exp(ikx).

We can solve this equation explicitly. To do this set

u(t, x) = exp(λt) exp(ikx),

and plug this into the equation. We get

λ = −k2,

so that
u(t, x) = exp(−k2t) exp(ikx), (1.3)

and the mode decays exponentially in time with a rate that increases with k. (In
contrast, if you did the same thing with the hyperbolic equation (1.1), you would get
the solution

u(t, x) = exp(ik(t + x)),
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so that there is no decay in time, just a wave traveling to the left.) In the Fourier
representation k is called the wave number. Note that k has units of length−1. For a
given wave number k, the corresponding wavelength λ satisfies λ = 2π/k as you can
easily see by looking at the trigonometric term exp(ikx). Note that λ has units of
length.

This simple example shows that the initial data decays (dissipates) as time in-
creases. Another property that comes from the general solution to the heat equation
(which we will not give here) is that if u(0, x) is non-zero only in a small neighbor-
hood of x = 0, then u(t, x) will generally be non-zero for all x for t arbitrarily close
to t = 0.

There are two important points to bear in mind from these examples:

• ux is a non-dissipative advective term characterizing the propagation of distur-
bances. The same thing is true for odd spatial derivatives.

• uxx is a dissipative term (at least when combined with a single derivative in t).
The same thing is true for even spatial derivatives, but the sign in front of the
derivative matters.

If we consider the solution to the heat equation (1.3) we see that the dissipation
increases with the wave number k. Thus short wavelengths (large k) are strongly
damped while long wavelengths (small k) are only weakly damped. This is a
diffusion operator. Diffusion is very efficient in smoothing out small scale (large
k) disturbances. It is not so efficient in smoothing out large scale (small k)
disturbances. There are other ways to incorporate dissipation. Again suppose
that the lefthand side is only a single derivative in time (ut). We can include a
term on the righthand side of the form −γu with γ > 0. It is easy to see that
the solution to the equation

ut = −γu,

dissipates in time (the solution decays like exp(−γt)). The same thing is true
if you had an equation like

ut = ux − γu,

(do Fourier analysis - look for solutions which have a spatial dependence of
the form exp(ikx). This damping is independent of k, thus it is stronger than
uxx on the long wavelengths and weaker on the short wavelengths. This model
of damping is appropriate for some electromagnetic applications while uxx is
appropriate to model dissipation in a fluid.

Dissipation can be modeled by even derivatives of any order. The term −γu
can be thought of as a derivative of order zero. For example, you can see that a
term like −uxxxx is also dissipative. In this case high frequencies decay like k4

and so are really damped. This type of term is sometimes called hyperviscosity.
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In summary - even spatial derivatives correspond to dissipation, but the sign in
front of the derivatives is important. For the wrong sign an even derivative can
correspond to explosive growth. We will see this shortly.

Solution Methods. There are 3 major solution methods for time dependent
equations.

1. Finite difference methods. In these methods we break up the x−axis into dis-
crete points and then approximate the solution at these points.

2. Finite element methods. In these methods solutions are approximated by a sum
of functions each of which is non-zero over a small region.

3. Spectral methods. In these methods the solution is approximated by global
basis functions, for example by Fourier series for periodic problems.

In this course we will consider only finite difference methods.

Hyperbolic Equations. We consider first hyperbolic equations and will consider
parabolic equations later. Remember we want to generalize equations like ut = ux

which describe the propagation of waves. Ths most general case is a system

~ut = A~ux, −∞ < x < ∞, ~u(0, x) = ~u0(x),

where ~u is an m−dimensional vector and A is an m × m matrix. We will define this
problem as hyperbolic if A has m real distinct eigenvalues. There are other definitions
of hyperbolicity in which the requirement of distinct eigenvalues can be relaxed, but
we will not consider these. Note, a very simple dimensional analysis will tell you
that the eigenvalues have units length/time, i.e., they have units of velocity. We will
discuss this in more detail later.

In 2 dimensions a linear hyperbolic problem is of the form

~ut = A~ux + B~uy,

where the matrix
αA + βB,

has m real, distinct eigenvalues for all real α, β (except α = β = 0).
Note that A and B can depend on x and t (and y for 2 dimensional problems).

In this case the condition for hyperbolicity must hold for every x, y, and t.
There can also be a forcing term, e.g.,

~ut = A~ux + ~f(x, t).

In this case, while the forcing term can have a dramatic effect on the solution, hy-
perbolicity depends only on the matrix A, i.e., only on the coefficients of the highest
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order derivatives in the problem.

Examples of linear equations

1 - The one-way wave equation

ut = ux,

or more generally
ut = cux. (1.4)

Note that c has units length/time, i.e., units of velocity. | c | is the speed of propaga-
tion of the waves. (Recall that velocity is a vector quantity or in 1 dimension a signed
quantity - it can be positive or negative. In contrast the speed is the magnitude of
the velocity and is always a positive scalar.) It is often called the sound speed since
these problems arise in acoustics.

2 - The two-way wave equation written as a first order system,

(

u
v

)

t

=
(

0 1
1 0

) (

u
v

)

x

. (1.5)

Note that (1.5) has solutions of the form

u(t, x) = v(t, x) = f(x + t), (1.6)

and so admits waves propagating in the −x direction. However, (1.5) can be reduced
to the ordinary wave equation

utt = uxx, (1.7)

as can be seen by simply differentiating the first equation in (1.5) with respect to t
and the second equation with respect to x. Since (1.7) has solutions of the form

u(t, x) = f(x + t) + g(x − t)

it (and thus (1.5)) admits solutions traveling in both the −x and +x direction. This
is why it is sometimes called the two-way wave equation.

3 - The 2D wave equation

ut = c1ux + c2uy. (1.8)

Note that the speeds of propagation in the x and y directions need not be the same.
4 - The Euler equations linearized around an ambient stated of rest (governs the

motion of acoustic disturbances, for example through air).







p
u
v







t

= −







ρ∞c2
∞

(ux + vy)
px/ρ∞

py/ρ∞





 . (1.9)
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In (1.9) the unknowns are the (generally acoustic) pressure perturbation p and
the x and y components of the perturbed velocity vector (u and v). These equations
are obtained by linearizing the isentropic Euler equations assuming there is no mean
flow, the medium has ambient density ρ∞ and ambient sound speed c∞. Note that,
in acoustics and other areas, ambient quantities are often denoted by the subscript

∞.
By differentiating the first equation in (1.9) with respect to t and the next two

equations with respect to x and y respectively, you can see that p also satisfies the
ordinary wave equation

ptt = c2
∞

(pxx + pyy). (1.10)

Examples of nonlinear equations

Much of the phenomena of mathematical physics can not be described by linear
equations. One general example of a nonlinear system of equations is

~ut = A(~u)~ux, (1.11)

where ~u is an m−vector and A is an m×m matrix. This system is hyperbolic if A(~u)
has real, distinct eigenvalues for all ~u under consideration.

A very important class of nonlinear equations are systems of conservation laws

~ut = ~fx, (1.12)

where ~u and ~f are m−vectors. The function ~f(~u) is called the flux function. In this
case hyperbolicity depends on the Jacobian matrix

J(~u) = ∂ ~f/∂~u.

By the chain rule it is easy to see that equations of the form (1.12) can be brought
into the general form (1.11). In fact provided everything is sufficiently differentiable
(1.12) is equivalent to

~ut = J(~u)~ux. (1.13)

Suppose for example that we are dealing with 2-vectors. We can write

~u = (u1, u2)
T , ~f(~u) = (f1(u1, u2), f2(u1, u2))

T .

In this case the chain rule gives

~fx =
(

∂f1/∂u1 ∂f1/∂u2

∂f2/∂u1 ∂f2/∂u2

) (

∂u1/∂x
∂u2/∂x

)

= J(~u)~ux.

Although the equations (1.12) and (1.13) are equivalent for differentiable func-
tions, nonlinear hyperbolic problems often have discontinuous solutions. In fact if you
have ever heard of shocks in fluid dynamics, these are exactly discontinuous solutions
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to nonlinear hyperbolic systems. In this case (1.12) and (1.13) are not equivalent.
We say that (1.12) is in conservation form while (1.13) is in non-conservation form.
One simple example is Burgers equation which in conservation form is

ut = (u2/2)x, f(u) = u2/2.

The equation in non-conservation form is

ut = uux.

In this course we will generally assume that all functions are sufficiently differen-
tiable. Discontinuous solutions can be handled by some of the techniques presented
here, however for strong discontinuities special numerical techniques have to be de-
veloped.

2 WELL POSEDNESS

In order to solve a problem numerically we have to be certain that the original problem
is well posed. Consider the Cauchy problem

~ut = A~ux, ~u(0) = ~g(x), −∞ < x < ∞, (2.1)

where A is a constant m × m matrix. The use of the term Cauchy problem means
that it is a pure initial value problem. There are no boundaries. No problem can
be solved on an infinite domain using finite difference techniques. There has to be
boundaries somewhere. However the Cauchy problem is convenient because it is easy
to analyze and to gain insight from. We will model the infinite domain by assuming
periodicity over a finite domain.

The linear problem (2.1) is said to be well posed if the solutions grow no worse
than exponentially. Specifically if there exists a C and α so that for all t > 0 we have

‖ ~u(x, t) ‖≤ C exp(αt) ‖ ~u(x, 0) ‖= C exp(αt) ‖ ~g(x) ‖ . (2.2)

Note that C and α have to be independent of the initial data ~g. Also note that (2.2)
implies that the solution is unique since we are talking about linear problems. In
(2.2) a function space norm must be used. Typically the L2 norm

‖ ~g(x) ‖2=
∫

∞

−∞

‖ ~g(x) ‖2 dx,

is used. Note that for any x, ‖ ~g(x) ‖ is the usual L2 norm from linear algebra. Note
also that exponential growth of the solution is allowed for well posedness, however
the growth rate must be independent of the initial data.
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Example

Consider the system

~ut = A~ux, A =
(

0 1
−1 0

)

. (2.3)

It is easy to see that the eigenvalues of A are ±i so that (2.3) is not hyperbolic.
Suppose we consider the system in Fourier space. That is suppose our initial data is
just one Fourier mode

~u(x, 0) = ~g(x) = exp(ikx)~z.

The vector ~z is so far unspecified. Look for solutions to (2.3) of the form

~u(x, t) = exp(λt) exp(ikx)~z. (2.4)

If we substitute (2.4) into (2.3) we get an equation for λ,

λ~z = ikA~z, (2.5)

i.e., an eigenvalue problem. Now let ~z be an eigenvector of A, say x = (i, 1)T . Then

A~z = −i~z,

and we get
λ = k, , ~u(x, t) = exp(kt) exp(ikx)~z.

Now the wave number k can be as large as we like. Thus solutions to (2.2) grow like
exp(kt) for any k. This equation is therefore not well posed.

Of course (2.2) is not hyperbolic and if the above discussion means anything we
would expect hyperbolic problems to be well posed. In order to see this look at the
2-way wave equation

~ut = A~ux, A =
(

0 1
1 0

)

. (2.6)

It is easy to see that A has eigenvalues ±1. If we do the same computation as before
we now find that λ = ±ik depending on which eigenvector is chosen. Let us denote
the two eigenvectors by ~z+ and ~z−. Thus (2.6) has solutions that look like

~u = exp(ik(t + x)) ~z+, ~u = exp(ik(t − x))~z−.

(This should not surprise you as you know from before that solutions to the wave
equations look like functions of x + t and x − t). These solutions are bounded in
time. It is easy to see that all solutions can be written as a combination of these two
solutions, there is no exponential growth and (2.6) is well posed. You should also
now see the importance of having real eigenvalues to the matrix A.

Constant coefficient hyperbolic problems can be shown to be well posed, It can
also be shown that variable coefficient problems that are hyperbolic are well posed
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(with some technical restrictions and only locally in time). For nonlinear problems
there are no general results.

The Fourier analysis that we did for constant coefficient problems is often very
useful in analyzing both the partial differential equations as well as the numerical
approximations that we will develop.

The same analysis also works for parabolic problems. Consider

ut = uxx, u(x, 0) = exp(ikx).

As we found before (see (1.3))

u(x, t) = exp(−k2t) exp(ikx).

Thus there is no exponential growth for the Fourier modes. It can be shown that this
is true for general initial data and thus the heat equation is well posed. However,
suppose we had

ut = −uxx, u(x, 0) = exp(ikx).

We would then get as solution

u(x, t) = exp(k2t) exp(ikx),

which is terribly ill posed. Thus for even derivatives the sign in front of the spatial
derivative is important. You can use this analysis to look at derivatives higher than
2. For example you can verify that

ut = −uxxxx

is well posed while
ut = uxxxx

is ill posed.
One important point for you to remember is that when the spatial derivative is

even, well posedness depends on the sign in front of the derivative term. For example,
the equations

ut = uxx, ut = −uxxxx,

are dissipative and are perfectly well posed. In contrast, the equations

ut = −uxx, ut = uxxxx,

are very ill posed (you can think of them as anti-dissipative). In contrast when the
spatial derivative is of odd order, the sign does not matter. The equations

ut = ux, ut = −ux,

are both well posed. The sign in front of the spatial derivative just determines the
direction in which the waves travel. The same thing is true for odd derivatives of

9



higher order, e.g., uxxx, as you can easily see by Fourier analysis. However, in this
case the solution is not just a translation of the initial data. Different Fourier modes
(i.e., different values of k) travel at different speeds. This phenomenon is called
dispersion and we will discuss this in more detail later.

Finally, suppose you have several spatial derivatives of different order on the right
hand side. For example, suppose you have the equation

ut = uxx + ux. (2.7)

In this case well posedness and the ultimate type of the equation is determined by the
highest order spatial derivative on the right hand side. We will not give a rigorous
proof of this, but it is not too difficult to see why this is true. Generally, well posedness
depends on the behavior of Fourier modes for large values of k. If you consider a finite
range of values of k, say 0 ≤ k ≤ K, then you can generally expect to get values
of C and α for the bound in (2.2) because it is over a finite range in k (at least in
the context of Fourier analysis - the extension to general initial conditions is just a
technical point). The problem in getting a uniform bound as in (2.2) is getting such
a bound for large values of k. If you do a Fourier analysis on an equation such as
(2.7) you will get

λ = −k2 + ik, (2.8)

and for large values of k the behavior of (2.8) is dominated by the highest power
of k on the right hand side. (You can neglect the term k in comparison to k2 for
large values of k. The highest power of k corresponds to the highest order spatial
derivative. Note, that this would also be true if there were a small coefficient in front
of the uxx term, i.e., if you considered the equation

ut = εuxx + ux. (2.9)

Equation (2.9) models a physical process with both diffusion and advection and the
diffusion can have a coefficient in front of it that is as small as you like. However, when
you consider large k it doesn’t matter. The behavior of the Fourier representation of
(2.9) is still dominated by the second derivative for large k. You can think of this
as saying that when you have a combination of diffusion and advection like (2.9) the
diffusion, i.e., the dissipation of the initial data, always wins no matter how small the
coefficient is. It is true however that if you are not interested in small scales (k large)
then many times you can ignore uxx terms with a small coefficient as in (2.9). For
example, the equations

λ = εk2 + k, λ = k,

give similar values of λ if you are only interested in a suitable finite range of values
of k. In fluid dynamics the εuxx term models small fluid viscosity (high Reynolds
number) . For such flows you can often consider the ε = 0 problem (inviscid flow) if
you are not interested in small scales.
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3 SPATIAL DIFFERENCES

Consider the equation

ut = ux, u(x, 0) = g(x), −∞ < x < ∞. (3.1)

Equation (3.1) is a simple, well posed hyperbolic initial value problem for t ≥ 0. In
fact you can write the solution explicitly,

u(x, t) = g(x + t).

Even though x and t enter the equation symmetrically they play different roles in
the solution because you are marching in time. That is you give data at t = 0 and
then try to determine what happens for t > 0. This is the essence of an initial value
problem.

Before discussing numerical methods for (3.1) we consider simple ways to just
approximate derivatives. Remember, you can never solve a problem on an infinite
interval (at least with finite differences). In practice we will solve on a finite domain
a ≤ x ≤ b and impose boundary conditions at the boundary. We will get to this later.

Central differencing - second order

We consider the simplest way to approximate ux by trying try to mimic what is
done in basic calculus. We introduce a grid of points, xj = jh where h is the grid size
(sometimes the symbol ∆x is used for h). We also let uj denote u(xj). (Sometimes
uj denotes only the computed approximation to u(xj)). The simplest approximation
to ux is

ux ' uj+1 − uj−1

2h
(3.2)

.
In order to see why (3.2) makes sense we use Taylor series

u(x + h) = u(x) + hux +
h2

2!
uxx +

h3

3!
uxxx +

h4

4!
uxxxx + O(h5),

u(x − h) = u(x) − hux +
h2

2!
uxx −

h3

3!
uxxx +

h4

4!
uxxxx + O(h5).

After subtracting these 2 equations we get

u(x + h) − u(x − h) = 2hux +
h3

3
uxxx + O(h5).

Simplifying we get

ux =
u(x + h) − u(x − h)

2h
− h2

6
uxxx + O(h4). (3.3)
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If we now interpret (3.3) in terms of grid points and grid values we have

ux(xj) =
uj+1 − uj−1

2h
− h2

6
uxxx(xj) + O(h4). (3.4)

You may already be familiar with the O notation. The symbol O(h4) simply
means a quantity which is bounded by h4 times a constant independent of h, i.e.,

| O(h4) |≤ Ch4.

The approximation

ux ' uj+1 − uj−1

2h
, (3.5)

is called a central difference approximation because it weighs each side of xj equally.
You can see from (3.4) that the leading order term of the error is −h2/6uxxx. This
is because usually you consider h small, so that h2 � h4. (3.5) is called a second
order approximation because the leading order term in the error is proportional to
h2. This means that if you double the grid (i.e., cut h in half) the error is reduced by
a factor of 4. The leading order term of the error is sometimes called the truncation
error. Note again that for all of these Taylor series type analysis you always look at
the leading order term in the error (the smallest power of h that you leave out), as
you assume that h is small so that for small h the lowest power of h dominates all of
the higher powers.

Another way to look at this is that (3.5) is exact if uxxx = 0 (all over not just
at one point). This says that u is a quadratic, i.e., u only has powers of x up to x2.
This will generally not be the case for most computations. There will generally be
an error due to the fact that u is not quadratic, and the error will be proportional to
h2uxxx. In applications it is difficult to quantify what this error actually is.

Fourier Analysis

A more quantitative approach to analyze errors is to do Fourier analysis. If you
set u(x) = exp(ikx) then

ux = iku, (3.6)

and
u(x + h) − u(x − h)

2h
=

exp(ikh) − exp(−ikh)

2h
u

and by simple manipulation we get

u(x + h) − u(x − h)

2h
= ik

sin(kh)

kh
u. (3.7)

Equations (3.6) and (3.7) show that the effect of finite differences in Fourier space
is to change the function ik (exact differentiation) to the function ik sin(kh)/(kh)
(second order finite differences). Now you should know from basic calculus that

lim
z→0

sin z

z
= 1
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Thus for fixed k we get the right answer as h → 0. However, when kh is large we
get the wrong answer. In fact if kh = π, sin(kh) = 0 so the finite differences are
completely wrong.

Points Per Wavelength

In Fourier space the error in the central difference formula Er(k, kh) is

Er(k, kh) = ik − ik
sin(kh)

kh
= ik(1 − sin(kh)

kh
). (3.8)

The error has two components. There is a factor of ik on the outside and the relative
error

e2(kh) = 1 − sin(kh)

kh
. (3.9)

The first term in Er(k, kh), the factor ik, represents an accumulation term, i.e., errors
accumulate as you compute over more and more waves. We will discuss this term
later when we talk about PDEs. The relative error, e2(kh) represents the error per
wavenumber k (you get it by dividing the total error Er by ik) and we discuss this
error here.

What can we say about e2(kh)?

1. For fixed k, e2(kh) → 0 as h → 0. This is called consistency. It says that for h
sufficiently small you get the right answer.

2. e2(kh) = O((kh)2). This follows because

sin z

z
= 1 + O(z2) (3.10)

for z near 0. This is just another way of saying that the difference formula is
second order accurate. Note that what we are interested here is how well the
function sin z/z approximates 1.

3. The relative error is only a function of kh. This is very nice for several reasons.
First kh is nondimensional since k has units of length−1 and h has units of
length. Second kh has a very nice interpretation as the number of points per
wavelength. In fact if you look at the function exp(ikx) you see that

exp(ik(x + λ)) = exp(ikx)

where

λ =
2π

| k |
is the wavelength of this Fourier mode. (Note that we have tacitly assumed
that k is positive. This not always be the case and so we use the absolute value
since the wavelength is necessarily positive.)
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Now let N be the number of grid points in one wavelength. It is easy to see
that N = λ/h = 2π/ | kh |. Turning this around we have

| kh |= 2π

N
.

Thus the relative error for wave number k depends only on N , the number of
points per wavelength. We will see that this is an important consideration in
determining the error for solutions to partial differential equations but it is not
the whole story because we have to consider the accumulation term, i.e., the
factor ik on the outside in (3.8).

4. Unfortunately second order differencing is not very accurate. Up to leading
order we have

sin z

z
= 1 − z2

6
+ O(z4),

Expressing this in terms of kh and then N we have

e2(kh) ' | kh |2
6

=
(2π)2

6N2
. (3.11)

If for example we want e2 ' 0.1 then N ' 8. Thus to get a 10% error you need
about 8 points per wavelength. We will see that in solving partial differential
equations you may need much more depending on how long in time you have
to solve for and how big your domain is.

Now all of these calculations are relatively straightforward. However, you might
question how you get k in practice. For example, in many (most) problems you do
not work with exp(ikx) but rather with Gaussians or other more general functions.
There is no complete answer to this and generally this requires some intuition about
the problem. What you try to do is to determine a characteristic wave length of the
problem. For example, if your initial condition is a Gaussian, you might consider the
Fourier transform and try to estimate a characteristic wave number kc so that say
90% of the energy is in wave numbers below kc.

Higher Order Difference Approximations

In many problems the second order formula is not sufficiently accurate. The
computational cost of solving an equation depends on the number of grid points that
you use and obviously you would like to make the number of grid points as small as
possible. In order to do this we use higher order difference formulas.

The formula

ux ' uj+1 − uj−1

2h
,
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approximates ux using only the nearest neighbors of grid point xj (i.e., xj+1 and xj−1).
It is easy to see that this formula is unique. It is the only second order formula which
uses only the two neighbors. Such a formula is called compact.

If we were to use the next adjacent grid points, i.e., xj+2, xj−2, we could get many
different formulas. For example,

ux ' A
uj+1 − uj−1

2h
+ (1 − A)

uj+2 − uj−2

4h
,

is a second order approximation to ux for any value of A.
Generally this is not a good idea. The best approximations are the compact ones.

What is a good idea though is to use the additional freedom of the xj±2 points to get
a higher order accurate approximation. To see how this works, rewrite (3.4) using
both h and 2h

ux(xj) =
uj+1 − uj−1

2h
− h2

6
uxxx(xj) + O(h4), (3.12)

ux(xj) =
uj+2 − uj−2

4h
− (2h)2

6
uxxx(xj) + O((2h)4), (3.13)

Now multiply (3.12) by 4/3, multiply (3.13) by -1/3 and add. You will find
that the coefficient of uxxx (the leading order term of the error for the second order
approximation) vanishes and we get

ux(xj) =
4

3

uj+1 − uj−1

2h
− 1

3

uj+2 − uj−2

4h
+ O(h4). (3.14)

If we rewrite (3.14) in grid point notation and drop the error term we have the
approximation

ux(xj) '
−(uj+2 − uj−2) + 8(uj+1 − uj−1)

12h
, (3.15)

which is the unique, compact fourth order central difference approximation to ux. By
keeping track of the uxxxxx term in the Taylor series you can see that the leading
order term of the error is

−h4 uxxxxx

30
One way to look at this is that the fourth order formula (3.14) is exact for fourth
degree polynomials (quartics) where uxxxxx = 0.

As before it is more instructive to do Fourier analysis. Let u = exp(ikx). Then
apply (3.15) to u to get,

ux ' ik(
4

3

sin(kh)

kh
− 1

3

sin(2kh)

2kh
)u. (3.16)

Observe that we do to the function sin(kh)/(kh) the same thing that we did to the
Taylor series. This is true in general. We can work either with the Taylor series or
the function sin z/z. If we define

f4(z) =
4

3

sin z

z
− 1

3

sin(2z)

2z
=

8 sin z − sin(2z)

6z
, (3.17)
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then from what we have just done you should be able to see that f4(z) is a fourth
order approximation to 1, i.e., for small z

f4(z) = 1 + O(z4),

(compare with (3.10)). You should now see that the relative error for fourth order
differencing, e4(kh), satisfies

e4(kh) = (1 − f4(kh)), (3.18)

(compare with (3.9). If you explicitly work out the expansions you will find that

f4(kh) = 1 − z4

30
+ O(z6). (3.19)

We therefore have

e4(kh) =
(kh)4

30
+ O((kh)6). (3.20)

As before we will be primarily concerned only with the leading order term in (3.20).
Equation (3.20) says that the finite difference approximation (3.15) is consistent (i.e.,
e4(kh) → 0 as kh → 0) and fourth order accurate. If we redo the calculation that we
did before to express the error in terms of points per wavelength then for a relative
error of 0.1 we require

(kh)4 ' 30 × 0.1 = 3

or since N = 2π/(kh) we have

N4 ' (2π)4

3
, N ' 4.8.

Remember that we got N ' 8 for second order differencing. Thus going to fourth
order differencing reduces the resolution requirements by almost a factor of 2, just
for the approximation to the derivatives. We will show that the relationship between
second and fourth order differencing gets even better when you consider partial dif-
ferential equations.

Finite Differences Beyond Fourth Order

You can generate approximations of any even order. For an approximation of
order 2p we use p neighbors on each side of the point xj (i.e., xj±1, . . . , xj±p.) The
precise weights can be derived by writing the Taylor series for uj±1, . . . , uj±p and
taking linear combinations to eliminate all the odd derivatives of order 2l + 1 for
l = 0, . . . , p−1. The leading order term of the error (truncation error) is proportional
to h2pd2p+1u/dx2p+1.

The difference approximation can also be derived in Fourier space by taking linear
combinations of

sin z/z, , sin(2z)/(2z), sin(pz)/(pz),
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so that the resulting combination equals 1 + O(z2p).

Remarks on Fourier Analysis

The first thing you might ask is how you apply Fourier analysis for typical compu-
tations of PDEs. Generally you do not work directly with exp(ikx). In most problems
there is a characteristic length scale that you know beforehand. For example, you
may not know exactly what the wavelength is, but you may know that the solution
will oscillate on a certain scale. You can then use this scale as a characteristic wave-
length, plug into the formulas and get estimates for h. In practical computations the
Fourier analysis is only a guide to what your resolution requirements will be. On the
other hand it is very useful because of the simplicity and quantitative nature of the
formulas (and because generally you can estimate characteristic wavelengths).

We have expressed the error in terms of the nondimensional number kh, which is
essentially the inverse of the number of points per wavelength. However, you should
not think that kh can take all values. In fact the only relevant values for kh are

−π < kh ≤ π.

In order to see why, recall that we are looking for waves of the form exp(ikx).
So far k is arbitrary. But we are really looking at exp(ikxj), i.e., we are looking at
trigonometric functions on the grid xj = jh. On this grid two wave numbers k1 and
k2 give the same values if k1h = k2h + 2π. This follows from basic manipulation with
complex exponentials,

exp(ik2xj) = exp(ik2jh) = exp((ik2h)j) = exp(i(k1h)j).

Thus a high frequency (large k wave) can look like a smooth (low frequency) wave on
the grid. For example. if kh = 2π the exp(ikxj) = 1 = exp(i0xj).

The phenomenon of high frequency waves looking like low frequency waves on the
grid is called aliasing and can be a severe source of numerical errors.

Another way to look at this is that from the formula kh = 2π/N we see that if
| kh |= π then N = 2, which is the smallest sampling you can do (it is for 2 points
per wavelength). Of course, you can restrict your attention to kh in any interval of
length 2π. The restriction to −π < kh ≤ π is natural since the formula in terms of
points per wavelength works out and also because it allows a representation of the
highest wave numbers which you can see on the grid.

Graphical Representation of Central Differencing

In order to pictorially see the effect of central differencing as an approximation
to the operator d/dx, we can plot graphically the effect of exact differentiation and
the finite difference approximation by working in Fourier space. Suppose that the
x axis is now k and the limits are from −π/h to π/h. Think of h as fixed, but for
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graphical purposes it can be any positive number. We can now represent the operator
d/dx in Fourier space by the line y = k (we are neglecting the factor of i). Second
order central differencing can be represented by the function kf2(k) = k sin(kh)/(kh),
fourth order differencing by the function kf4 and so forth for higher order difference
formulas.

What you will find is that the each curve, y = kf2p(k) goes through the origin
(consistency). Furthermore as p increases the order of contact between the curve and
the line y = k (exact differentiation) at k = 0 increases (second order contact for f2,
fourth order contact for f4 etc.. However, each curve moves away from the line y = k
as k increases. (When kh = π all of the central difference formulas give 0). Thus
higher order derivatives give you a better fit for small kh, however there are large
errors as | kh |→ π. Thus finite differences are always inaccurate for such values of kh.

-2 0 2
k

-2

0

2

kf
2p

k

kf2

kf4

kf2

kf4

Figure 1: Graphical representation of central differencing

One-sided Differencing

Another way to approximate the first derivative is to use one-sided differences.
Two such formulas are

ux(xj) ' (uj+1 − uj)/h, (3.21)

which is called a forward difference for obvious reasons, and

ux(xj) ' (uj − uj−1)/h, (3.22)
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which is called a backward difference. For concreteness consider the forward difference
formula. It is easy to see that this formula is first order accurate and that the leading
order term in the truncation error is h/2 uxx. You can see this from the expansion,

(uj+1 − uj)/h = ux(xj) +
huxx(xj)

2
+ O(h2),

which you can derive from Taylor series.
We can also do Fourier analysis. Set u = exp(ikx) and plug into (3.21). After

some manipulation you can obtain the result,

(uj+1 − uj)/h =
(cos(kh) − 1)/h + i sin(kh)

h
exp(ikxj). (3.23)

Recall that exact differentiation corresponds to multiplication by ik. Thus result of
one sided differencing is complex rather than purely imaginary. Thus the error is
no longer purely imaginary. We will not do anything more right now with central
differencing, but we will see when we get to partial differential equations that the real
part in the representation (3.23) can act as an additional dissipative term and damp
out oscillations in the numerical approximation/

Approximations of Second Derivatives

If we have a second order equation, for example

utt = uxx, or ut = uxx,

then you have to compute an approximation to uxx. Manipulation of the Taylor series
for u around xj gives,

uxx(xj) =
uj+1 + uj−1 − 2uj

h2
− h2

uxxxx

12
+ O(h4). (3.24)

You can see from (3.24) that the second order, central difference approximation to
uxx is

uxx(xj) '
uj+1 + uj−1 − 2uj

h2
,

and the truncation error is
−h2 uxxxx

12
.

Note that the coefficient of the truncation error (1/12) is smaller than for the first
derivative (1/6) (see 3.4). This is because you are being more compact. You are using
the nearest neighbors to get a second derivative rather than first derivative.

The Fourier analysis of (3.24) is very similar to what we did for the first derivative.
Set u(x) = exp(ikx), apply (3.24) and compare to the result of exact differentiation.
We get

uxx = −k2u, uxx ' −2k2
1 − cos(kh)

(kh)2
.
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The relative error (dividing the error by k2) is now

E2(kh) =| 1 − 2(
1 − cos(kh)

(kh)2
) | .

As we did before we can expand for small kh to get

E2(kh) ' (kh)2

12
.

You should compare this with the result for the first derivative (3.11) where the
relative error was (kh)2/6. Again for a give kh the relative error is smaller for ap-
proximation to the second derivative than for the first derivative.

4 TEMPORAL ERRORS

So far we have not considered the effect of advancing the solution in time. We will
now consider what happens when we approximate partial differential equations. We
will begin with the simple initial value problem

ut = ux, u(x, 0) = g(x), −∞ < x < ∞. (4.1)

This problem is very simple. You can write down the solution,

u(x, t) = g(x + t).

You might ask why we consider such a simple problem. It is typical that when deal-
ing with partial differential equations and their numerical solution general, rigorous
results are not available. For example for many simple looking nonlinear partial dif-
ferential equations there are no proofs of existence. Thus for complicated equations
it is almost impossible to study and prove anything about the properties of numerical
approximations. The idea is to study the properties of numerical approximations for
simple problems such as (4.1) to get insight as to how the methods behave for more
complicated problems.

By now we know how to approximate the ux. Let’s introduce some simpler nota-
tion. Set

D2(h)u =
u(x + h) − u(x − h)

2h
.

It is simplest to think of D2(h) as mapping functions in L2 into other functions. In
other words think of D2(h) as operating on functions rather than on sequences. We
will omit the dependence of D2 on h unless there is a possibility of confusion.

One way to approximate the solution to (4.1) is to solve the equation

vt = D2v, v(x, 0) = g(x), −∞ < x < ∞, (4.2)
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(note v denotes the approximate solution, it is not equal to u) by approximating vt

by some of the methods we have learned previously.
What can happen? Basically two things:

1. The resulting approximation can be unstable. When this happens the numerical
solution can grow exponentially and even faster. (Note that there is no growth
associated with the underlying equation (4.1)). This is analogous to an ill posed
partial differential equation.

2. The resulting approximation can be perfectly stable but inaccurate. To some
extent this is more pernicious than instability because if your approximation is
unstable you will know it. The numbers will overflow in the computer. On the
other hand, if you are getting stable numbers you may be fooled into thinking
that the answer is accurate when it could be very inaccurate. (Remember that
in general you will only be solving partial differential equations numerically
when you do not know the answer beforehand).

Continuous in Time Approximation

Before discussing actual methods, i.e., discrete methods in space and time, we will
discuss one more approximation, namely semi-discrete approximations. In particular
consider the system (4.2) and let us consider the exact solution to this equation. Thus
we are discretizing in space but not in time. This significantly simplifies the analysis.
Remember that you should think of the operator D2(h) as a mapping of the function
space L2 into itself.

We are thus solving the semi-discrete approximation (4.2). Of course, in reality
you cannot do this. You have to introduce some discretization in time. However,
the semi-discrete approximation can give you a lot of insight into the nature of the
numerical errors. It will turn out that for central differencing (not necessarily for
one-sided differencing) the semi-discrete problem is stable in time, i.e., solutions do
not blow up. Thus, we only have to worry about the causes of inaccuracies (point 2
above). These numerical errors fall into two general categories:

1. Dispersion

2. Dissipation

Dispersion occurs when for the computed solution different wave numbers have
different phase velocities. (We will define what this means shortly).

Dissipation is where there is a spurious loss of energy due to the numerical ap-
proximation.

We first discuss dispersion and digress to describe two velocities associated with
wave propagation. Consider a linear system with constant coefficients. Suppose that
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for each wave number k we have solutions of the form

~u(x, t) = exp(iω(k)t) exp(ikx)~z, (4.3)

for some vector ~z. Clearly this describes a wave where for each wave number k the
frequency is ω(k). The quantity dω/dk has units of length/time and is thus a velocity.
(Note that ω itself has units of 1/t). In addition, the quantity ω/k also has units of
length/time and is a velocity associated with the wave. What is the difference between
these two velocities? The phase velocity of the wave with wavenumber k is −ω/k.
This simply says that if you consider a wave of the form (4.3) and consider a curve
x(t) in the x− t plane where the phase is constant, you will find that dx/dt = −ω/k
(just set the time derivative of the phase equal to 0). In contrast, if you look for
a curve in the x − t plane where the phase is stationary (i.e., the derivative of the
phase with respect to k is zero), you will find x/t = −dω/dk. The quantitiy −dω/dk is
sometimes called the group velocity and describes the rate at which energy propagates
in a packet of waves.

We will not pursue this further, as an analysis of such energy flow is not important
for the development of numerical methods. However, we will discuss the ramifications
of dispersion since such dispersion will be introduced by numerical discretizations. A
system is said to be non-dispersive if

dω/dk = constant.

Otherwise a system is dispersive.
So far the discussion of dispersion has been more related to wave propagation than

to numerics. However, consider the example,

ut = ux.

Simple algebra (try a solution of the form exp(iωt) exp(ikx)) gives the dispersion
relation

ω = k.

Thus this equation is non-dispersive. To see a dispersive system consider the equation

ut = ux + uxxx. (4.4)

The dispersion relation is
ω = k − k3.

Thus dω/dk is not constant and this system is dispersive. In generally dispersive
systems are really exciting because the fact that different wave numbers have different
velocities means that a simple pulse can have very complex behavior as it evolves in
time since different Fourier modes propagate with different velocities. For example, if
you start with a simple, localized pulse (for example a Gaussian function of x), a long
oscillatory tail can develop. On the other hand if you had a non-dispersive system
then the pulse propagates essentially unchanged.

Unfortunately
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1. Many interesting physical problems are non-dispersive, at least to a very good
approximation.

2. Numerical approximations introduce spurious numerical dispersion so that very
interesting, but wrong, solutions are computed

3. It is very common for people not familiar with numerical dispersion to “dis-
cover” interesting results, which are not real but rather arise from spurious
numerical dispersion.

Analysis of Numerical Dispersion

Consider the equation
ut = ux (4.5)

and the semi-discrete approximation

vt = D2(h)v. (4.6)

Suppose for both equations we have the initial condition

u(x, 0) = v(x, 0) = exp(ikx).

We can now write down the exact solutions in the form

u(x, t) = a(t) exp(ikx), v(x, t) = b(t) exp(ikx) (4.7)

(Fourier analysis again). Plugging into the equations we can derive ordinary differ-
ential equations for a and b. We get

ȧ = ika, a(0) = 1, (4.8)

and

ḃ = ik
sin kh

kh
b, b(0) = 1. (4.9)

Note that (4.9) follows directly from the central difference approximation in Fourier
space (see (3.7)). If we solve for a and b we get

a(t) = exp(ikt) = exp(iωut), (4.10)

and

b = exp(ik
sin kh

kh
t) = exp(iωvt). (4.11)

If you recall the form of the exact solutions (4.7), you can see that the PDE solution is
non-dispersive (dωu/dk = 1) while the numerical approximation is dispersive because
ωv depends nonlinearly on k.
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This should not surprise you. Remember from (3.4) that accounting for the leading
order term in the truncation error we have

D2(h) = (v(x + h) − v(x − h))/(2h) = vx + h2vxxx/6 + O(h4).

Thus v in (4.6) really solves the equation

vt = vx + h2vxxx/6 + O(h4), (4.12)

and we saw that adding a third derivative is dispersive (see (4.4)). Equation (4.12)
without the O(h4) term is sometimes called the modified equation. Up to leading
order it is the PDE that is solved by the numerical approximation.

Using these formulas we can see how many points per wavelength we really need
in solving PDEs. Compare the exact solution,

u(x, t) = exp(ik(x + t))

with the approximate solution

v(x, t) = exp(ik(
sin kh

kh
x + t)).

(You might ask where did the ω’s go? We have assumed the speed of propagation
in the original equation is unity, i.e., we work with the equation ut = ux, instead of
the equation ut = cux where c is the speed of propagation, for example the sound
speed if you are working in acoustics. In this case both t and x are nondimensional
or equivalently have the same units so that for the exact solution ω = k rather than
ω = ck. Nondimensionalizing so that we can take c = 1 simplifies the formulas but
doesn’t really change the analysis or the results.) You should now see that the only
errors are in the phase and are due to dispersion.

Slow down for a minute and reflect on what we have done. Previously we looked
at errors in approximating the derivative in Fourier space. The effect in Fourier
space is to replace exact differentiation (multiplication by ik) by multiplication by
ik sin(kh)/(kh). However, we did not discuss how this error manifests itself. Now we
looked at a PDE using the semi-discrete approximation. We showed that the errors
in the spatial derivatives are manifested in the phase (i.e., in the time dependence
of the wave). Furthermore, we previously considered only the relative error by not
considering the ik factor in front of the sin(kh)/(kh) term. Now that we see the total
error is in the phase and is multiplied by t, we have to consider what happens as t
increases. We will see that the factor ik in front of sin(kh)/(kh) has the effect of
increasing the error as t increases. This is because phase errors will accumulate over
many wavelengths.

To see this, let Pu and Pv be the phases for u and v. We have

Pu = k(x + t), Pv = k(
sin kh

kh
t + x). (4.13)
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You can see from (4.13) that the phase error grows linearly with t. Thus for any given
kh the solution gets worse the longer you integrate for. Said another way, in order to
control the phase error the number of points per wavelength depends on how long you
integrate for, i.e., how long you want to follow the solution. This is a manifestation
of the accumulation of phase errors.

At time t the phase error e(kt, kh) depends on kt and kh. It is given by

e(kt, kh) =| Pu − Pv |=| kt(1 − sin kh

kh
) |'| kt(kh)2

6
| . (4.14)

Now let’s normalize by the number of periods in time that you want to compute for.
It is easy to see that for a given k, the solution is periodic in t with period T = 2π/k.
Suppose that we want to follow the solution for J periods so that t = JT . We have

t = JT =
J2π

k
→ kt = J2π.

If we plug this value of kt into (4.14) and treat the phase error e as a function of J
and kh, we get

e(J, kh) '| J2π(kh)2

6
| .

Now remember that kh can be related to N , the number of points per wavelength
(N = 2π/(kh). We can then replace treat e as a function of J and N and get

e(J, N) '| J(2π)3

6N2
| . (4.15)

Note that in applications J and N are more physically relevant than kt and kh.
Remember that the model problem (4.5) and the Fourier analysis are just a guide for
what to expect in more complicated problems. Usually you will have some idea of a
characteristic wavelength for the problem and some idea for the characteristic period
and the number of periods that you want to solve for.

Finally we can turn (4.15) around to get a formula for N in terms of J , for a given
error level e,

N '
√

J(2π)3/
√

6e. (4.16)

You can now estimate N (the required resolution) given J (length of time you want
to solve for) and an error level e. Suppose for example e = 0.1. We then have

N ' 20
√

J.

If we want e = 0.01 we have
N ' 64

√
J.

Let us summarize this. In general you want the phase errors to be constant over
the whole computation. However, the phase errors will accumulate as you solve the
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equation. Thus you have to account for J , the length of time of the computation
in assessing resolution requirements. For a given error level the number of points
per wavelength increases as

√
J (i.e., as

√
t). For example, even for the crude error

e = 0.1, if J = 9 then N ' 60. Since if you integrate for a longer time, the waves
travel a greater distance you can also interpret this as saying that N increases with
the size of the spatial region of your computation (the number of waves you want to
compute).

You should easily be able to repeat the same analysis for fourth order differences.
Instead of (4.14) the phase error is now

e = kt(1 − f4(kh)),

where f4(z) is defined in (3.17). Since

1 − f4(kh) ' (kh)4

30
,

for small values of kh (see (3.20) we get an expansion for the error,

e '| J(2π)5

30N4
| (4.17)

where as before J is the number of periods and N is the number of points per wave-
length. We can now rewrite (4.17) to express N in terms of e and J ,

N ' J1/4(2π)5/4/(30e)1/4. (4.18)

Thus as you increase the number of periods, N increases as J 1/4 for fourth order
differencing as opposed to J1/2 for second order differencing. You should know that
the function J1/4 increases much more slowly as J → ∞ than the function J 1/2. If,
for example, we set e = 0.1 we get

N ' 7.5J1/4,

so that if J = 9, then N ' 13 (as opposed to about 60 for second order differencing).
We should point out that these estimates are for the semi-discrete problems. Dif-

ferencing in time can sometimes improve the accuracy because of a cancelation of the
phase errors, however the scaling of N with J will generally be unchanged.

You can extend this to central differencing of order p, where p is even. You will
find a general scaling relationship of the form

N ' J1/p

for pth central differencing.
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Numerical Dissipation

The above analysis showed that central differencing was non-dissipative for the
semi-discrete problem. That is we started with exp(ikx) and got back a dispersive
solution but with the same amplitude. Another way to look at this is to see that
when we did the Fourier analysis we got a real ω.

To see the effect of numerical dissipation let’s consider, instead of central differ-
encing (4.6), the approximation

vt = D+v, (4.19)

where D+ is the forward difference operator (see (3.21)),

D+v =
v(x + h) − v(x)

h
. (4.20)

Now (4.20) is only first order accurate so it is not clear why you would want to
do this. Let’s do the Fourier analysis again. Set v(t) = c(t) exp(ikx) and plug in to
(4.19) to get

ċ = (
−1 + cos kh

h
+ i

sin kh

h
)c,

which we can write as

ċ = ik
sin kh

kh
c − 1 − cos kh

h
c. (4.21)

Now if we write c(t) = exp(iω(k)t) we get

iω = ik
sin kh

kh
− 1 − cos kh

h
, (4.22)

and we see that ω is no longer real. Now, since the real part of iω is less than
0, (1 − cos kh > 0), c(t), and hence the solution to (4.20), decays as t increases.
It is important for you to realize that this decay is purely due to the numerical
discretization. There is no decay associated with the underlying partial differential
equation. We can go a little further. Suppose kh is small and use the Taylor expansion
for the real part in (4.22)to get

1 − cos kh

h
' k2h

2
,

i.e., the first order accuracy manifests itself in a decay rate which is O(h). (Recall
that units of time and space are indistinguishable for (4.1) since we take the speed of
sound =1.)

This should raise a question in your minds. We saw that if we did a forward
difference the solution would decay in time. Without doing the algebra you should
expect that doing a backward differencing (3.22) should switch the signs so that the
solution should grow exponentially in time. In fact it does. This is a manifestation of
numerical instability. A seemingly small change in the numerical procedure can give
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you explosive growth for a problem for which the analytic solution does not grow.
You will see many other examples of this.

You can ask why do forward and backward differencing have such dramatically
different effects. Look at the basic equation (4.1). The general solution is u = g(x+t),
where g(x) is the initial data. This describes a wave moving to the left. For example
if g is a pulse centered at x = 0 then for large times g(x + t) is a pulse centered
at x = −t. Another way to look at this is that the solution is constant along the
family of curves t + x = constant. These are the characteristic curves for (4.1). The
characteristic curves travel to the left as t increases. You can think of the initial
data being propagated along the characteristic curve, for example the value of g(0)
the initial data at x = 0 is carried to the left on the characteristic curve x + t = 0.
Consider a fixed value of x, say x = x1. At any given time u(x1, t) depends on values
of u at earlier values of t but also on values of x to the right of x1. On the other
hand the solution at this time does not depend on values of x to the left of x1. It is
therefore natural to use the forward difference and the analysis confirms that this is
stable and indeed dissipative. This is called upwind differencing. It is not natural to
use the backward difference and the analysis confirms this by showing the backward
differencing (downwind differencing) leads to numerical instability. Often (but not
always) numerical instability results from doing something in your approximation
that violates the physical principles underlying the equation and the solution.

The last question that you might ask is why you might want to use a method
which gives decay to the solution. To understand why, suppose kh = π so that you
have only 2 points in the wave. On your grid this mode looks like +1,-1,+1,-1. It
is sometimes called the 2∆x mode because it is periodic with a period 2∆x = 2h.
Using central differencing any such component in the solution will persist because
sin(kh) = 0 for kh = π. Using upwinding however, this mode will decay in time.
Thus upwinding is good to get rid of spurious high frequency waves (i.e., waves that
oscillate on the scale of the grid) that central differencing can not damp. Upwinding
is also good for complex nonlinear problems which are prone to numerical instabilities
that you can not readily analyze.

5 MOSTLY EXPLICIT DIFFERENCE SCHEMES

Consider a general hyperbolic system,

~ut = A(x, t)~ux, −∞ < x,∞, ~u(0, x) = ~g(x), (5.1)

where for every x and t, A(x, t) is a real m×m matrix with distinct real eigenvalues
so that (5.1) is hyperbolic. When (5.1) is discretized in both space and time we
obtain a difference scheme. Both the theory and notation for difference schemes are
much more complicated than for the semi-discrete approximation that we considered

28



previously. Because of this we will do as much as we can by simple examples. In
particular, we will consider the basic initial value problem equation for the one-way
wave equation,

ut = ux, u(x, 0) = g(x), −∞ < x < ∞. (5.2)

In many instances it is straightforward to generalize methods for (5.2) to the more
general system (5.1).

We next discuss some basic notation. We will use h and ∆x interchangeably
to denote the grid spacing in x. We will generally use ∆t to denote the timestep
although occasionally we may use k if it makes the formulas simpler. For an approx-
imation to the solution at time tn = n∆t and at xj = jh we will use the notation
vn

j . Thus vn
j is an approximation to u(xj, tn) = un

j . We will also use the notation
λ = ∆t/h = ∆t/∆x.

Forward Euler

In many difference schemes you decouple differencing in time from differencing in
space. That is you use some differencing in x, get the semi-discrete approximation
and then use some differencing in t to get your difference scheme. The simplest case
is when you use central differencing in x and forward Euler in t. The scheme is

vn+1
j = vn

j + λ/2 (vn
j+1 − vn

j−1) (5.3)

Before we analyze (5.3) we make two observations. First while we expect ∆t and h to
be small it does not follow that λ is small. In fact the size of λ will be very important
in analyzing difference schemes. Second, you should see the general form for λ. If
instead of (5.3) we had the more general equation

ut = cux,

where c is a velocity (think of it as the sound speed) then you would get the same
formula as in (5.3) provided λ is defined as

λ = c∆t/∆x. (5.4)

Thus everything is the same as for c = 1, except that λ has to be replaced by (5.4).
This will be true for many other schemes as well. It follows from (5.4) that λ is
non-dimensional. λ is often called the Courant number (after Richard Courant).

Equation (5.3) is called a one-step scheme because vn+1
j depends only on data at

time level n. In particular there is no problem in starting from the initial data, i.e.,
v0

j = g(xj). It is also called an explicit scheme since vn+1
j can be obtained directly

from the data at time level n. There is no coupling among the values at time level
n + 1 for different values of j.

If we apply the differencing to the exact solution u(x, t) we get

ut(xj, tn) =
un+1

j − un
j

∆t
− ∆t utt + O(∆t2), (5.5)
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ux(xj, tn) =
un

j+1 − un
j−1

∆x
− ∆x2

6
uxxx + O(∆x4). (5.6)

If we equate the left-hand side of (5.5) to the left-hand side of (5.6) (from the equation
(5.2)), and only keep the highest order term in the error, we find that un

j (i.e., the
exact solution evaluated at the grid points) satisfies the equation

un+1
j = un

j +
λ

2
(un

j+1 − un
j−1) + ∆tT, (5.7)

where

T =
∆t

2
utt −

∆x2

6
uxxx (5.8)

is called the truncation error. It is the amount by which the exact solution fails to
satisfy the difference scheme.

In the forward Euler case the truncation error contains a term proportional to ∆t
and to ∆x2. This should not surprise you since we are using first order differencing in t
and second order differencing in x. Schemes where the truncation error is proportional
to

A∆tp + B∆xq

are called (p, q) schemes. Thus forward Euler (5.3) is a (1,2) scheme. We will gener-
alize this concept later. Note some references reverse the order of p and q.

Von Neumann Analysis

What is the analogue of Fourier analysis for a difference scheme? We can certainly
assume the x dependence to be of the form exp(ikxj), but it is not clear what to do
about the t dependence. We saw before that the solution can have constant modulus
in t, can decay in t or can blowup in t. In order to account for all possibilities let us
assume

vn
j = zn exp(ikxj), (5.9)

where z is complex. Note that if | z |= 1 the solution has constant modulus, if | z |< 1
the solution decays in time and if | z |> 1 the solution blows up in time. We make
one further simplification of notation. Let ξ = exp(ikh). Then we have | ξ |= 1 and
we can rewrite (5.9) as

vn
j = znξj. (5.10)

. Now to do the analysis plug (5.10) into the difference scheme (5.3), assume z 6= 0
which is the non-trivial case, divide both sides by zn, solve for z and determine where
z is with respect to the unit circle in the complex plane. From simple algebra we get

z = 1 + iλ sin(kh). (5.11)

Notice that for the exact solution we would have z = exp(iω∆t) = exp(ik∆t) so that
| z |= 1.
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What can we say from (5.11)? Certainly if kh = 0, so that the mode is constant
in x, then z = 1. This is just what you should get from the exact solution. Thus the
difference scheme is exact for constants. This is called consistency. It says that the
scheme is exact for constants or alternatively it is at least zeroth order accurate.

Next let’s see what happens for fixed k as h → 0. We have

z = 1 + iλ sin(kh) ' 1 + iλkh = 1 + ik∆t. (5.12)

Thus,
zn ' (1 + ik∆t)n ' exp(ikn∆t) = exp(iktn).

Thus in this limit we recover the exact solution. However, computationally we can
see modes where kh is not small. Suppose for example that kh = π/2. In this case
we have

z = 1 + iλ, | z |=
√

1 + λ2, | z |> 1,

so that zn explodes as n increases.
This kind of analysis is called von Neumann analysis (after John von Neumann).

We will use it heavily. Also note that it is a general theorem that any scheme that is
forward in time and centered in space is unstable.

Backward Euler

In the backward Euler scheme we do almost exactly what we did for forward Euler
(see (5.3)) except that we compute the spatial derivative at time level n + 1. The
scheme is

vn+1
j = vn

j + λ/2 (vn+1
j+1 − vn+1

j−1 ). (5.13)

This is still a one-step scheme (it involves only levels n and n + 1) and you can easily
see that it is a (1,2) scheme. However, there is now a complication. The values at
level n + 1 for different j, vn+1

j are all coupled together. In order to advance the
solution one timestep you must solve a system of linear equations. For example, if we
rewrite (5.14) to get all of the terms at level n + 1 together we would get the system
of equations

vn+1
j − λ/2 (vn+1

j+1 − vn+1
j−1 ) = vn

j . (5.14)

Now if you were to write this system as a matrix times a vector the j th row would
correspond to the equation at grid point xj. Thus 1 (coefficient of vn+1

j ) will be on
the diagonals. The j + 1 term would correspond to the first diagonal above the main
diagonal (first super diagonal) and would have the coefficient of vn+1

j+1 which is −λ/2.
The first sub-diagonal would have the coefficient of vn+1

j−1 which is just λ/2. A matrix
for which there are non-zeros only on the main diagonal and the first super diagonal
and first sub diagonal is called a tridiagonal matrix. It turns out that it is easy and
efficient to solve tridiagonal systems.

However, you may be questioning the size of the system you have to solve. As
written here (5.14) is valid for every j. Thus the linear system is infinite and you
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can not solve such a system on the computer. The problem is we have considered an
infinite interval. If we had considered (5.2) on a finite interval then we would have
had a finite system. This would force us to consider boundary conditions which we
will do later.

If we assume that we can solve the linear equation we still have to address the
question of stability. Is (5.13) stable? You should recognize the importance of this
question as you just saw that a perfectly reasonable scheme (forward Euler (5.3) is
unstable. We can do the von Neumann analysis by setting vn

j = znξj, plugging into
(5.14) and getting an equation for z in terms of kh and λ. After a little bit of algebra
we get

z(1 − iλ sin(kh)) = 1. (5.15)

You should be getting pretty good by now in replacing difference quotients by sines.
Clearly if kh = 0 we get z = 1 so the scheme is consistent. However if we rewrite

(5.15) to solve for z we get

z = 1/(1 − iλ sin(kh)),

and after a little bit of algebra you can see that | z |≤ 1 for all kh so the scheme is
unconditionally stable (stable for all λ) and furthermore | z |< 1 unless kh = 0, π.
Thus not only is backward Euler stable but it dissipates most modes (like what you
saw before for upwind differencing).

You may think this is completely wrong. Why would you want the numerics to
provide a dissipation of energy when there is no such mechanism in the underlying
equation? In fact, the dissipation is within the truncation error and in many nonlinear
problems backward Euler is very useful because it suppresses instabilities that you
can not analyze. Remember in this subject you are always analyzing simple problems
and trying to use the numerics for hard problems that you can not analyze.

Since backward Euler is our first stable scheme, it is the first scheme that has
a chance of getting the right answer. You can then ask the question, what about
convergence? Convergence is the following question. What if h and ∆t both → 0
and n and j both → ∞ in such a way that xj → x and tn → t. In this limit we
assume that ∆t and h approach zero in such a way that the ration λ is fixed. When
can you say that vn

j → u(x, t). It turns out that there is a general theorem for linear
equations which states that if a scheme is stable and consistent it is convergent. We
will not go into this, generally the main issues in solving a problem are getting a
stable scheme and getting an accurate scheme. If so, for practical purposes you can
generally assume that the scheme converges.

This example should show you one more thing. Often seemingly harmless and
innocuous changes to the scheme can make a big difference as far as stability is con-
cerned. We will see this with other schemes as well.

δ−formulation
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We discuss here a reformulation of backward Euler (and of other implicit schemes)
which tends to be better behaved numerically. In the δ−formulation you do not solve
directly for vn+1

j . Instead you rewrite (5.13) in terms of

δj = vn+1
j − vn

j ,

and solve for δj. This gives the system of equations

δj − λ/2 (δj+1 − δj−1) = λ/2 (vn
j+1 − vn

j−1). (5.16)

Note that you must also do the update step

vn+1
j = vn

j + δj. (5.17)

Why is the δ−formulation worth doing? In many applications you are solving
the time dependent equation only to get to the steady state, i.e., a state where the
solution is independent of time. So for example if you are solving

ut = ux

you are really interested in the steady state equation

ux = 0.

From (5.16) you can see that at steady state (i.e., δj = 0) vn
j solves the steady state

equations,
vn

j+1 − vn
j−1, (5.18)

independent of the timestep. Thus the δ−formulation automatically monitors how
close you are to steady state and gives you the correct steady state equations.

Another advantage of the δ−formulation is that often the solution is not changing
very much. Thus vn+1

j may be very close to vn
j . If this is so, and you solve directly

for vn+1
j you risk that the change δj can get swamped by round-off errors. This way

you are solving directly for the change.

Lax-Friedrichs

So far we have not come up with a stable explicit scheme. One of the most basic
explicit schemes is the Lax-Friedrichs scheme. We do the same thing that we did for
forward Euler (see (5.3)), except that we average at level n. The scheme is

vn+1
j =

(vn
j+1 + vn

j−1)

2
+

λ

2
(vn

j+1 − vn
j−1). (5.19)

It is easy to see that (5.19) is a (1,2) scheme in the same way as (5.3). You might
also think that the averaging in (5.19) should only make a minor change to the
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properties of the scheme. However suppose we do a von Neumann analysis. Set
vn

j = znξj = zneijkh, plug into (5.19) and get an equation for z. The equation is

z = cos(kh) + iλ sin(kh). (5.20)

In order to see (5.20) you should by now expect that the central difference term is
going to give you something related to i sin(kh). It is easy to see that the averaging
gives you the cosine term.

It follows from (5.20) that | z |≤ 1 provided λ ≤ 1. In fact | z |< 1 if λ < 1
provided kh 6= 0, π. Thus Lax-Friedrichs tends to dissipate small disturbances. It
tends to be inaccurate, but it tends to be very robust, particularly in dealing with
complex, nonlinear problems which may be prone to instabilities.

We make one further point. Suppose that instead of (4.1), you had a sound speed
that was different from 1. Specifically suppose we wanted to solve

ut = cux, u(x, 0) = g(x), −∞ < x < ∞. (5.21)

Note that c now has units of speed (length/time). You can set up Lax-Friedrichs for
(5.21). You now have to use (5.4) for λ and the stability condition is

c∆t/h ≤ 1.

Typically, you give h and a value of λ and determine ∆t, i.e.,

∆t =
αh

c
.

The number α is often called the Courant number.
Note that this is another example where a seemingly innocuous change can stabi-

lize an unstable scheme. However, you should realize that generally averaging tends
to smooth out disturbances and in many instances is a stabilizing operation. This
example also shows the power of the von Neumann analysis in predicting stability
for a scheme. Note also that unlike backward Euler (5.13 the Lax-Friedrichs scheme
is not unconditionally stable. It is only stable for a range of λ. Furthermore, as a
general rule the more implicit you are the more stable you are. While many implicit
schemes can be unconditionally stable, explicit schemes can be at most conditionally
stable.

You now have the tools to see this, at least heuristically. Suppose first that you
have a 1-step explicit scheme. When you do the von Neumann analysis you will get
zn+1 on the lefthand side of the equation while the righthand side of the equation will
depend on zn and λ. When you cancel out zn you get a relationship of the form

z = H(λ, kh),

where H is some function. For an explicit scheme λ will be in the numerator. Now
unconditional stability means that you can let λ → ∞ while z satisfies | z |≤ 1.
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Clearly this can not happen. If you have a multi-step scheme, for example a 2 step
scheme so that vn+1

j depends on so that vn
j and vn−1

j , then you cancel zn−1 and you
get an equation of the form

z2 = H(z, λ, kh),

where λ is still in the numerator, and at least heuristically you expect that if λ → ∞,
you will get z → ∞. For implicit schemes, like Backward Euler, you get λ in the
denominator and that’s why you can get unconditional stability.

Implicit vs. Explicit Schemes
Often when you solve problems you are called upon to make a choice. Explicit

schemes are easy to compute, do not require you to work with matrices and are easy
to program. However, they have stability bounds and are prone to nonlinear instabil-
ities that go beyond what comes out of the von Neumann analysis. On the other hand
implicit schemes tend to be more stable and robust. But they are expensive compu-
tationally and require you to work with matrices and use linear algebraic techniques
to update the solution.

This tradeoff gets more complicated to evaluate when you consider nonlinear equa-
tions. Suppose for example that you have a nonlinear conservation law,

ut = fx, f = f(u).

In this case, it is very straightforward to extend an explicit scheme, such as Lax-
Friedrichs. However, it is not easy at all to extend an implicit scheme like backward
Euler. In fact, in this case you would get a system of nonlinear equations to solve,
which in general would be much harder to solve than the linear system that we con-
sidered. We will discuss this later.

Leap Frog

The leap frog scheme is a central difference in both space and time.

vn+1
j = vn−1

j + λ (vn
j+1 − vn

j−1). (5.22)

Note that (5.22) is a two level scheme. Since we only have one set of initial data, leap
frog needs some starting procedure to get v1

j . Note also that the name is suggestive
of the scheme since to get level n + 1 you leap over level n. Another way to look at
this is that the odd time levels are obtained from leaping over the even time levels.
Similarly the even time levels leap over the odd time levels. You will see that this is
a useful way to look at the scheme.

It is easy to see that (5.22) is a (2,2) scheme. It can be shown that in order to
maintain second order accuracy it is sufficient for the starting procedure to be a first
order scheme.
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We can easily do a von Neumann analysis for leap frog. Set

vn
j = zn exp(ikhj). (5.23)

If we plug into (5.22) and now divide by zn−1 we get a quadratic equation for z.
You should easily be able to see that for each additional step of a scheme you get an
additional power of z in the von Neumann analysis. Thus if you had a 3 step scheme
you would get a cubic polynomial for z.

The equation is
z2 − 2iλ sin(kh) − 1 = 0,

and using the quadratic formula we get

z = iλ sin(kh) ±
√

1 − λ2 sin(kh)2. (5.24)

You can easily see that | z |= 1 provided λ ≤ 1. You can also easily see that if λ > 1
one of the roots satisfies | z |> 1. Thus leap frog has the stability bound λ ≤ 1.
Remember, if we had a sound speed, i.e., if we solved the equation

ut = cux,

the stability bound would be
c∆t

h
≤ 1.

When leap frog is stable, there is no dissipation. It is a purely non-dissipative
scheme. The numerical errors are due completely to dispersion. While you may think
this is good, remember that dissipation can serve to damp undesirable modes that
can arise from nonlinear interactions. In fact leap frog can be very delicate and is
prone to instabilities when used with nonlinear equations.

Leap frog also has the bad property that even for kh = 0 (i.e., the constant mode)
there are two roots z = ±1. It is easy to see that the root z = −1 is not consistent
with a continuous function of time. It represents a decoupling of the odd and even
time levels due to the nature of the scheme. Note that since there is no damping, this
mode will persist in time. In practice some form of artificial dissipation will have to
be introduced. We will discuss this later.

Generally leap frog is run near its stability limit. If you compute the truncation
error for leap frog you will find that the truncation error (assuming the basic equation
is ut = ux) is

T =
∆t2uttt − h2uxxx

6
.

Thus when λ → 1 (which means ∆t = h) leap frog becomes exact. There is a
cancelation of errors as λ approaches 1. This is characteristic of many (2-2) schemes.
Generally you never run exactly at the stability limit, but slightly below so as to
provide a margin of safety in your computation.
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You might think this is great since you can run at bigger timesteps (more efficient
calculations) and get more accuracy. However, there are many problems where this
can work against you. For example, suppose the equation is

ut = c(x)ux, (5.25)

so that the sound speed is spatially variable. In this case for stability you have to
take the smallest λ over the whole domain

λ ≤ 1

cmax
,

where cmax is the maximum sound speed over the whole domain. Now suppose that
the maximum sound speed occurs at x1 while for some x2, c(x2) � c(x1). Then
your computations near x1 will be very accurate because you are near the stability
limit. However, near x2 the effective λ will be small and the computations will be
less accurate. This is a characteristic problem with leap frog and other (2-2) schemes.
Large variations in c cause large variations in the effective λ. In practice, after long
times the solution will be dominated by errors due to the small λ regions.

(2-4) Leap Frog
There is a very common variant of leap frog that is second order in time and

fourth order in space. It is obtained simply by using fourth order central differences in
space. You might ask why you don’t use fourth order differences in time. The starting
procedure with leap frog is hard enough when you have to get one step. Doing fourth
order central differences in time is just generally not done. Also generally schemes
with many levels in time require a lot of storage.

The (2-4) leap frog is

vn+1
j = vn−1

j + λ (
4

3
(vn

j+1 − vn
j−1) −

1

6
(vn

j+2 − vn
j−2)). (5.26)

By repeating the analysis that led to (5.24) you can show that (5.26) is stable provided

λ ≤ λ0 ' 0.728. (5.27)

In order to see this, note that if you redo the analysis of (5.24) using fourth order
spatial differencing, the term sin(kh) is replaced by the term

F (kh) =
4 sin(kh)

3
− sin(2kh)

6
.

The stability condition is then

1 − λ2F 2(kh) ≥ 0.

This leads to

λ ≤ 1

| F (kh) | ,
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and in order to have stability for all kh we have to take the smallest value of λ, i.e.,

λ ≤ 1

max | F (kh) | ,

where the maximum is taken over the interval −π ≤ kh ≤ π. This maximum can
be computed numerically leading to (5.27). This analysis also shows that the (2-4)
leap frog is non-dissipative; the errors are all dispersive. There is still an odd/even
decoupling.

The (2-4) leap frog illustrates several general properties.

1. Generally you do not want the storage required for many levels in time. Thus
it is very common to work with schemes that are only second order in time and
higher order in space. Note that it does not require additional storage to do
higher order spatial differencing.

2. It is typical of (2,4) schemes that the stability limit is reduced from the corre-
sponding (2-2) scheme.

3. To understand why this is natural note that the truncation error behaves like

O(∆t2) + O(h4).

Another way to look at this is that if ∆t = λh then the error looks like

O(h2) + O(h4),

and there does not seem to be any benefit in using a (2-4) scheme. The error
still decreases as h2. The only way to get something like fourth order accuracy
is to use a small timestep (i.e., λ has to be small) so that the second order
temporal error does not dominate the fourth order spatial error. The stability
analysis, which gives a reduced stability limit, is trying to tell you that you
should reduce the timestep.

4. Generally you run (2-2) schemes near their stability limit. There is no point in
taking too small a timestep and in fact as we saw above for leap frog spatial
and temporal errors often cancel so (2-2) schemes run best near their stability
limit. However, (2-4) schemes are often run below their stability limit to reduce
the second order temporal errors.

5. The major advantage of (2-4) schemes occurs in higher dimensions. Suppose for
example you can cut your grid in half (increase h by 2) by using fourth order
spatial differencing. In 3 dimensions this leads to a decrease by a factor of 8
in the required number of grid points. The fact that you may have to run at a
smaller timestep is minor compared to the large reduction in spatial grid points.
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To recapitulate - you generally run (2-4) schemes well below the stability limit.

Artificial Dissipation

One of the major problems with the leap frog is that of spatial oscillations. These
are mostly associated with the fact that modes with kh = π are not damped (also
modes with kh near π). These can become very pernicious for nonlinear problems
and can lead to instabilities.

In order to deal with these oscillations you can add artificial dissipation to the
scheme. Artificial dissipation is based on the idea that even derivatives (with the
correct sign) are dissipative. In the crudest form, artificial dissipation would be to
just add a term like εuxx or −εuxxxx to the scheme. You might think that this is
straightforward, however it can be a problem, particularly for leap frog which can be
unstable when applied to dissipative problems.

In order to see what happens consider only the ordinary differential equation

dy/dt = −ay. (5.28)

As we have seen before (5.28) is a model of what happens when you have a dissipative
term. You can get such an equation for example by Fourier transforming the heat
equation. Solutions to (5.28) decay in time like exp(−at).

Suppose we apply leap frog (just central differencing in time) to (5.28). We get

vn+1 − vn−1 = −2a∆tvn. (5.29)

Notice that we are maintaining the convention that v is to be used for the numerical
solution. Next set vn = znv0 to get

z2 + 2a∆tz − 1 = 0. (5.30)

If you examine the roots of (5.30) you will see that for small values of a∆t the roots
behave as

z = −a∆t ± 1. (5.31)

One of the roots behaves like 1− a∆t and is consistent with the exponential decay of
the solution. However, the other root (sometimes called the parasitic root) is outside
the unit circle. This root will give exponentially growing solutions.

We learn from this that straightforward leap frog (or central differencing in time)
is unstable for dissipative problems.

The instability can be removed by lagging the dissipation. In particular suppose
we replaced (5.29) by

vn+1 − vn−1 = −2a∆tvn−1. (5.32)

In this case you can easily see that both roots are inside the unit circle. The same
thing happens if you average the dissipation, i.e., if you use

vn+1 − vn−1 = −2a∆t(vn+1 + vn−1)/2. (5.33)
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The basic point is that leap frog can work with dissipative terms provided they are
not taken at time level n.

You should see that this is another example where a seemingly small change to
the numerical scheme has a big effect on the performance of the scheme.

We now want to consider methods to artificially add dissipation terms to leap
frog. Consider first the (2-2) leap frog. You want to add dissipation with coefficients
that vanish as h → 0 so as to maintain convergence. Typically the dissipation for
leap frog is taken as O(h4). Thus for the (2-2) leap frog you typically add a term of
the form

−εh4vn−1
xxxx, (5.34)

to the scheme, differenced using central differencing (second order).
Note that ε must be obtained from numerical experimentation. Also, the artificial

dissipation will lead to a reduction in the maximum stable timestep.
The same thing can be done for the (2-4) leap frog, although in this case the

dissipation is taken of order h6. Specifically you add a term of the form

εh6vn−1
xxxxxx, (5.35)

where you can again use second order central differencing (the fourth order truncation
error is still applicable because of the term h6).

When you have a system, then the dissipation terms should be evaluated for each
component of the solution. Furthermore, observe that the dissipative term is large
when the solution changes rapidly (high derivatives are large), while the dissipation
is small when the solution varies gradually (high derivatives are small).

Issues in implementing leap frog
In dealing with leap frog we have two points to consider.

1. Starting procedure

2. Ameliorating the splitting between successive time levels

The starting procedure can lead to problems. Because leap frog is non-dissipative
any errors in the starting procedure can manifest themselves over long times - they
will not decay.

In order to start the scheme you need some mechanism to advance the solution
to the first time level. Sometimes you have a small time expansion for the solution.
That is, while you do not know the exact solution you have an approximation which
is valid for small times and you can use this to get the values at ∆t.

Another method is to use a one-step scheme. This can be Lax-Friedrichs or even
the unstable forward Euler scheme. The one-step schemes are often implemented
using a bootstrap procedure. To see how this works let ∆t be the time that you
want to advance the solution to. Then use a one-step scheme to advance to say ∆t/8.
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Then use leap frog to advance to ∆t/4. Then repeat with leap frog to advance to
∆t/2 and finally to ∆t. This procedure can reduce temporal errors if you use a first
order starting procedure, but also works well even if your starting procedure is second
order.

The temporal oscillations are directly due to a decoupling of the odd and even
timesteps which is itself related to the two roots that you get from the von Neumann
analysis (see (5.24)). In particular, the root z = −1 for kh = 0 is spurious but can
result from numerical errors or from errors in the starting procedure. In order to
control these oscillations you should periodically couple the odd and even time levels
by using a one-step scheme every M timesteps, where M has to be chosen for each
problem.

Another approach is to average the solution periodically. Thus for example sup-
pose you have vn−1

j , vn
j and vn−1

j . You can then define v
n+1/2

j = (vn+1
j + vn

j )/2 and

v
n−1/2

j = (vn
j + vn−1

j )/2 and begin the leap frog for the half timesteps.

Lax-Wendroff
We next consider a family of dissipative schemes. We first discuss a precise def-

inition of dissipation. Consider Lax-Friedrichs (5.19). We saw that generally this
scheme tends to dissipate small disturbances as for most values of kh we have z < 1
provided λ < 1 (see (5.20). However, Lax-Friedrichs is not strictly dissipative. You
can see this by looking at what happens if kh = π. In this case there is no dissipa-
tion, z = −1. In order for a scheme to be truly dissipative we would like a condition
whereby | z |< 1 for all kh 6= 0. (Generally z = 1 for kh = 0 by consistency).

The definition commonly used in practice is this. A scheme is dissipative of order
2r for a particular value of λ if there exists δ(λ) such that

| z |≤ 1 − δ | kh |2r, | kh |≤ π. (5.36)

Note that both Lax-Friedrichs and backwards Euler fail to satisfy (5.36) because of
problems at kh = π.

One scheme that is dissipative (of order 4) is the Lax-Wendroff scheme. Consider
the equation

ut = ux, (5.37)

with appropriate initial conditions. In order to derive the scheme, recall that uxx is
a dissipative term, so we would like to involve this term in the scheme as much as
possible. The Lax-Wendroff scheme accomplishes this by employing a Taylor series
in t. Consider the expansion for the exact solution

un+1
j = un

j + ∆t un
t,j +

∆t2 un
tt,j

2
+ O(∆t3). (5.38)

Now use (5.37) to replace ut by ux and utt by uxx. Then use central differences to
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approximate ux and uxx. We get the scheme

vn+1
j = vn

j +
λ

2
(vn

j+1 − vn
j−1) +

λ2

2
(vn

j+1 + vn
j−1 − 2vn

j ). (5.39)

Recall that we are using v to denote numerical solutions. Note that (5.39) differs
from forward Euler by the last term. We expect this term to be stabilizing because it
approximates uxx. It is easy to see that Lax-Wendroff is a (2-2) scheme. Note, that
Lax-Wendroff schemes are complicated in that the temporal and spatial differences are
coupled together. You can’t directly separate out a part due to temporal differences
from a part due to spatial differences. This is different from simpler schemes like leap
frog or Lax-Friedrichs.

We next do a von Neumann analysis for (5.39). Set vn
j = zn exp(ikhj) and plug

into the scheme. After some algebra you can see that you get

z = 1 + iλ sin(kh) + λ2(cos(kh) − 1). (5.40)

It is easy to see that | z |≤ 1 provided λ ≤ 1. Note that z = 1 − 2λ2 < 1 for kh = π.
Furthermore, after some more involved algebra, you can see that

| z |≤ 1 − δ | kh |4,

provided λ < 1, so that Lax-Wendroff is dissipative of order 4. Note that the dis-
sipation vanishes as λ → 0. This can sometimes cause instabilities when there are
nonlinear problems and regions of space where the effective λ is close to 0.

You now have two ways to get some dissipation into your scheme. With leap frog
we used artificial dissipation. This required us to determine (“tune”) a parameter
ε. With Lax-Wendroff, dissipation is built into the scheme. We have no mechanism
to control the dissipation. Both approaches have advantages and disadvantages. For
example, the ability to control the amount of dissipation means that you can fine
tune your computation. You might, for example, make ε a function of x so that there
is enhanced dissipation in regions that are causing you trouble (giving rise to insta-
bilities). On the other hand, artificial dissipation will generally require several runs
to get the amount of dissipation right. It can also lead to a reduction in the timestep.
These “tuning” runs are avoided by using a dissipative scheme such as Lax-Wendroff.
Of course you can always add more dissipation to any scheme, however in using Lax-
Wendroff or any other dissipative scheme you generally have no mechanism to reduce
the amount of dissipation built into the scheme.

MacCormack’s Scheme
We will see below that the Lax-Wendroff scheme can be difficult to implement for

nonlinear and variable coefficient problems. The problem is in using the equation to
compute the analogue of utt. A scheme that avoids this problem is the MacCormack
scheme. It is a 1-step scheme, although divided into two half-steps called the predictor
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and corrector stems. There are also two variants of the MacCormack scheme. We
consider one variant, sometimes called the FB variant because there is a forward
predictor and a backwards corrector. The scheme is

v̂j = vn
j + λ(vn

j+1 − vn
j ), (5.41)

followed by

vn+1
j =

1

2
(v̂j + vn

j + λ(v̂j − v̂j−1)). (5.42)

Thus you make a prediction (v̂j) using a forward predictor (5.41) and then correct this
value in the corrector (5.42). Using a little bit of algebra you can see that for (5.37)
the MacCormack scheme (5.41-5.42) is equivalent to the Lax-Wendroff scheme. Note
in particular that even though you are using combinations of one-sided differences the
result is equivalent to the Lax-Wendroff scheme in which points j + 1 and j − 1 are
treated symmetrically. It is important to realize that MacCormack is not an upwind
scheme and you do not change the direction of the differencing if the direction of the
characteristics changes.

It is easy to see that there is a variant of MacCormack which uses a backwards
predictor and a forward corrector. This is also identical to Lax-Wendroff for (5.37).
In particular both variants of MacCormack are dissipative.

The MacCormack scheme is very widely used in practice. We first indicate how
to extend it to more general equations. First consider the conservation law

ut = fx (5.43)

where f(u) is some given function. We can derive a Lax-Wendroff type scheme for
(5.43) although it is complicated to get an approximation to utt (see (5.38). In
particular we have

utt = fxt = ftx = (f ′ut)x = (f ′fx)x.

The problem is you have to compute f ′. If you had a vector function then f ′ would
be replaced by the Jacobian matrix. Thus in this case Lax-Wendroff could become
extremely complicated. In contrast, the FB variant of MacCormack scheme is simply

v̂j = vn
j + λ(f(vn

j+1) − f(vn
j )), (5.44)

followed by

vn+1
j =

1

2
(v̂j + vn

j + λ(f(v̂j) − f(v̂j−1))). (5.45)

For the case that f(u) is a nonlinear function of u it is not the case that the FB
and BF variants are identical. Furthermore they are not equivalent to Lax-Wendroff.
However, they are both robust and dissipative schemes. For nonlinear problems it
is preferable to alternate the FB and BF variants. A reasonable stability bound to
employ is

C∆t/∆x ≤ 1,
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where
C = max | f ′(vn

j ) |
and the maximum is taken over all grid points j. Thus for nonlinear equations you
may have to adjust the timestep as time evolves. In order to see where this comes
from recall that if the equation were

ut = cux,

where c is a constant sound speed then the stability limit would be

c∆t/h ≤ 1.

In the case of a conservation law we can rewrite (5.43) as

ut = f ′(u)ux,

and thus f ′(u) plays the role of a nonlinear sound speed. For stability you have to
take the smallest stable timestep which means taking the largest local velocity.

You can verify that if u(x, t) is a solution to (5.43 then the solution would satisfy
either of the MacCormack variants to second order accuracy. Furthermore, if you
have variable coefficients it is sufficient to evaluate them at the point xj.

In implementing MacCormack, it is generally preferred to write subroutines di-
rectly for the FB and BF versions and then just alternate calling them in the main
program. You can also alternate in one subroutine but this makes the programming
more complicated and more prone to bugs.

Note that we have given the MacCormack scheme for equations which do not
depend explicitly on t. If the equation does depend on time then to get the second
order accuracy in time the righthand side for the predictor should be evaluated at
time level n and for the corrector the righthand side should be evaluated at level
n + 1. You can easily verify this by neglecting the x dependence and looking only at
an ordinary differential equation in time.

(2-4) MacCormack
It is possible to extend the MacCormack formulation to develop (2-4) dissipative

schemes. However, we will have to modify our definition of order of accuracy.
A scheme is said to be of order (p, q) if the truncation error E satisfies

E = ∆tF (∆t, ∆x), (5.46)

where
F (∆xq/p, ∆x) = O(∆xq)

Note that we will use here ∆x instead of h to make the concepts more transparent.
To see what this means set p = 2 and q = 4. This says that if ∆t = O(∆x2) then the
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error is O(∆x4). Thus you will get fourth order accuracy in x, but you can no longer
have ∆t scaling linearly with ∆x. Clearly if the original truncation error satisfies

F (∆t, ∆x) = O(∆tp + ∆xq),

for example the (2-4) leap frog, then the original definition is equivalent to the new
definition. The new definition is necessary to deal with schemes like MacCormack
where the time differencing is intertwined with the spatial differencing.

With this definition there is a family of (2-4) extensions of the MacCormack
scheme. The FB variant for the most commonly used one is

v̂j = vn
j +

λ

6
(−vn

j+2 + 8vn
j+1 − 7vn

j ), (5.47)

followed by

vn+1
j =

1

2
(v̂j + vn

j +
λ

6
(7v̂j − 8v̂j−1 + v̂j−2)). (5.48)

Note that both predictor and corrector are only first order accurate. From consistency
the sum of the coefficients inside each of the difference terms has to be 0.

The BF variant is

v̂j = vn
j +

λ

6
(7vn

j − 8vn
j−1 + vn

j−2), (5.49)

followed by

vn+1
j =

1

2
(v̂j + vn

j +
λ

6
(−7v̂j + 8v̂j+1 − v̂j+2)). (5.50)

For constant coefficient problems you can show that each variant has a truncation
error of the form

E = ∆t(O(∆x4) + O(∆t∆x2) + O(∆t2)).

(This requires some messy algebra but is straightforward). Thus each scheme is
a (2-4) scheme. For nonlinear problems you can only get fourth order accuracy by
alternating the FB and BF variants. In practice, even for constant coefficient problems
these variants should be alternated. If you have a conservation law like (5.43) then
the FB variant is

v̂j = vn
j +

λ

6
(−fn

j+2 + 8fn
j+1 − 7fn

j ), (5.51)

followed by

vn+1
j =

1

2
(v̂j + vn

j +
λ

6
(7f(v̂j) − 8f(v̂j−1) + f(v̂j−2))). (5.52)

The BF variant is similar. If you have variable coefficients you can evaluate them at
xj.

The stability bound can be worked out but it is very messy. The result is that
the (2-4) MacCormack is stable provided

λ = ∆t/∆x < 0.67.
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In practice the scheme must be run considerably below the stability limit to see the
benefits of the fourth order accuracy. However the scheme is very much more accurate
than the (2-2) MacCormack and much more robust than the (2-4) leap frog. Thus it
is a practical fourth order scheme.

This methodology can be extended to (2-6) schemes. One such scheme is (we only
give the FB variant)

v̂j = vn
j +

λ

30
(−37vn

j + 45vn
j+1 − 9vn

j+2 + vn
j+3), (5.53)

followed by

vn+1
j =

1

2
(v̂j + vn

j +
λ

30
(37v̂j − 45v̂j−1 + 9v̂j−2 − v̂n

j−3)). (5.54)

To verify that (5.53-5.54) is a (2-6) scheme requires some messy but straightforward
algebra. The stability bound has not been worked out precisely but is approximately
λ < 0.3. In practice the timestep has to be reduced considerably in order to get the
benefits of the sixth order accuracy.

Runge-Kutta
Schemes based on Runge-Kutta time differencing have become widely used over

the past few years. Runge-Kutta schemes are somewhat analogous to MacCormack
type schemes in that there are several stages that have to be computed. There are
many different Runge-Kutta schemes. We consider the most popular Runge-Kutta
scheme, namely four stage, fourth order Runge-Kutta. We will also consider a low
storage version. We first describe the scheme for an ordinary differential equation.

Consider the equation
du/dt = f(u, t). (5.55)

Note that there is now no spatial dependence, (5.55) is just an ordinary differential
equation. Suppose you have a solution at time level n. Following our previous no-
tation we will call the numerical solution vn. (There is now no j since there is no x
dependence). In fourth order Runge-Kutta you do the following stages

K1 = ∆tf(vn, tn), v̂1 = vn +
K1

2
, (5.56)

K2 = ∆tf(v̂1, tn + ∆t/2), v̂2 = vn +
K2

2
, (5.57)

K3 = ∆tf(v̂2, tn + ∆t/2), v̂3 = vn + K3, (5.58)

K4 = ∆tf(v̂3, tn + ∆t), vn+1 = vn + (K1 + 2K2 + 2K3 + K4)/6. (5.59)

This scheme requires 4 stages. You can show that it is fourth order accurate in t for
any f . The analysis is very messy but if f is only a function of t you can see easily
that this reduces to Simpson’s rule for integration.
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Before discussing partial differential equations, we want to analyze this scheme
and prepare ourselves for a von Neumann analysis. We still restrict to ordinary
differential equations. We consider the specific equation

du/dt = au, u(0) = u0. (5.60)

The exact solution is
u(t) = exp(at)u0. (5.61)

Suppose we do Runge-Kutta and look for solutions of the form

vn = znu0, (5.62)

(Note the similarity to von Neumann analysis). In order to find z you just have to do
one step of Runge-Kutta with u0 as initial condition. If you do this you will see that

z = P4(a∆t), (5.63)

where P4 is a fourth degree polynomial. In order to see why this is true just look at
the form of (5.56-5.59). You can easily see that each stage gives you a linear factor
of a∆t and since you have four stages you will get a fourth order polynomial.

Now you might think that it would be a mess to evaluate the coefficients of this
polynomial. However, it is not necessary to do the algebra. If you accept what I
said before, that (5.56-5.59) is a fourth order scheme and remember that the exact
solution at time ∆t is exp(a∆t)u0 (from (5.61)), then you can see that P4 must be
a fourth order polynomial which is a fourth order approximation to exp(a∆t). From
the Taylor series for exp(at) we have

exp(a∆t) = 1 + (a∆t) + (a∆t)2/2! + (a∆t)3/3! + (a∆t)4/4! + O((a∆t)5). (5.64)

It follows from (5.64) that the first five terms in the expansion,

P4(a∆t) = 1 + (a∆t) + (a∆t)2/2! + (a∆t)3/3! + (a∆t)4/4! (5.65)

is such a fourth order polynomial. Furthermore it is easy to see that it is the only
such polynomial. Any other polynomial must differ from P4(a∆t) by terms of at
most O((a∆t)4) while both must agree with exp(a∆t) up to order O((a∆t)5) and
both conditions can not be satisfied.

Thus given the fact that Runge-Kutta is fourth order we have been able to do the
analogue of von Neumann analysis. Before doing a partial differential equation we will
use what we have just derived for a special case. Suppose a is purely imaginary. Let’s
write a = iã. In this case solutions to (5.60) are bounded (you should be thinking
of hyperbolic equations where the righthand side is always imaginary). We can then
ask the question, for what values of ∆t will Runge-Kutta be stable. From what we
have already done and your experience with von Neumann analysis, you should be
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able to answer this question. Simply look at z = P4(iã∆t) and find conditions for
| z |≤ 1. We can phrase this in a simple way. Look at the polynomial P4(w) for w
on the imaginary axis. Suppose that you find the largest value of | w | such that
| P4(w) |≤ 1. Specifically suppose you find the largest R such that | P4(w) |≤ 1 for
| w |≤ R. Then Runge-Kutta is stable provided

| iã∆t |≤ R, (5.66)

which we can write as
∆t ≤ R/ | a | . (5.67)

R can be determined from simple computer experiments, R ' 2.8. Thus, the scheme
(5.56-5.59) is stable provided

∆t ≤ 2.8/ | a | .

We next discuss how to apply Runge-Kutta to a partial differential equation. We
will assume that you are doing fourth order differencing in space. Suppose we let D4

denote the fourth order central difference operator (3.15). Furthermore suppose we
define ~v as the vector containing the solution vj at each grid point. Then we can
convert the equation ut = ux into the system of ordinary differential equations

dvj/dt = D4~v |j, (5.68)

where j varies over the grid. (Note that vj is only a function of t, so we use the
notation for ordinary derivative.) Of course in practice we would need either boundary
conditions or periodicity to close the system. Finally we can apply the scheme (5.56-
5.59) to the system (5.68). Note that you can do this for more general equations as
well. In particular you can deal with time dependent coefficients as well as spatially
dependent coefficients.

Now all of the machinery that we developed above for ordinary differential equa-
tions can be applied to help you do the von Neumann analysis. We will do the von
Neumann analysis in a slightly different manner from what we have done before just
to simplify the presentation. We first do a Fourier analysis in x. If we set

vj = a(t) exp(ikhj)~v0,

and plug into (5.68) we get an ordinary differential equation for a(t),

da/dt = i(
4

3
sin(kh)/h − 1

3
sin(2kh)/(2h)) = iF4(kh)/h (5.69)

where we define

F4(kh) =
4

3
sin(kh) − 1

6
sin(2kh),

(refer back to (3.16) and the argument that led to (5.27)). It then follows from (5.67)
that fourth order Runge-Kutta is stable for any particular kh provided

| F4(kh)∆t/h |≤ R,
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or
∆t ≤ h(R/F4(kh)). (5.70)

You now have to do this for all kh. In order to get stability for all Fourier modes
you have to take the smallest timestep for all kh which means you have to compute
the maximum of | F4(kh) | for −π < kh ≤ π. You can compute this maximum
numerically to get

∆t ≤ h(0.728)(2.8).

You should refer to the analysis for the (2-4) leap frog and observe that you get the
same function to maximize.

This version of Runge-Kutta is fully fourth order, even for problems where the
coefficients depend on time. It is storage intensive however, as each stage must be
stored. This can be a problem in 3 dimensions. A low storage version is also used for
problems which are independent of time. We will give this version for the ordinary
differential equation

du/dt = f(u),

K1 = ∆tf(vn), v̂1 = vn + K1/4, (5.71)

K2 = ∆tf(v̂n
1 ), v̂2 = vn + K2/3, (5.72)

K3 = ∆tf(v̂n
2 ), v̂3 = vn + K3/2, (5.73)

K4 = ∆tf(v̂n
3 ), vn+1 = vn + K4. (5.74)

The advantage of this method is that the individual computations for each stage
need not be saved until the end. This method is only fourth order provided the
right hand side is independent of t. You can see that this method has exactly the
same polynomial as for (5.56-5.59) and thus the same stability bound. It is called
low-storage Runge-Kutta.

Generally Runge-Kutta can allow for higher accuracy in time at the cost of addi-
tional storage. The scheme is not dissipative for kh = π as you can readily see. This
leads to spatial oscillations which are generally damped using artificial dissipation in
the same way as is done for the leap frog (see (5.34) and (5.35)), although now the
actual time level at which the dissipation is introduced is not crucial.

6 SYSTEMS

Before proceeding to a study of implicit schemes we consider the extension of what
we have done to systems of equations. Consider a general system of equations

~ut = A~ux, −∞ < x < ∞, ~u(0, x) = ~u0(x), (6.1)
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where ~u, ~u0 are m−vectors and A is an m × m matrix. In this section it will be
important to distinguish between column and row vectors. In (6.1) ~u is a column
vector. All of the schemes that we have so far considered can be applied to (6.1). The
only difference is programming. This is true even if A depends on x, t and ~u. Note
further that all schemes can be applied to systems of conservation laws as well.

What we want to consider here is the effect on stability of having a system instead
of a scalar equation. We therefore assume that A is a constant matrix. Remember
the definition of hyperbolicity. A has m real and distinct eigenvalues. Let’s call these
eigenvalues µ1, µ2 . . . µm. Since the eigenvalues are all distinct, the matrix A can
not have any Jordan blocks. A must be similar to a diagonal matrix which has the
µ’s along the diagonal. These eigenvalues have units of length/time. Thus they are
speeds. They are sometimes called the characteristic speeds of the system.

We next focus on stability for systems. We illustrate the concepts with leap frog.
You should not think that leap frog is special. The analysis we will give is true for all
of the schemes that we have studied. We use leap frog only for illustrative purposes.
Leap frog for the system (6.1) results in the scheme

~vn+1
j = ~vn−1

j + λA (~vn
j+1 − ~vn

j−1), (6.2)

where we use the notation ~v to denote the numerical solution. Note that only λA
appears in the scheme. We now set ~vn

j = zn exp(ikhj)~v0 and plug into (6.2). Com-
paring with (5.23) we see that the difference between the scalar and vector case is the
vector ~v0 which has to be determined. We get from (6.2) the vector equation

(z2I − 2i sin(kh)λA − I)~v0 = 0, (6.3)

where I is the identity matrix. Since we do not want ~v0 to be 0, we now get the
equation for z by requiring the determinant of the matrix in (6.3) to vanish.

At first glance this looks much more complicated than the scalar case. However,
we can reduce it to the scalar case by hyperbolicity. There is a matrix P such that

PAP−1 = Λ (6.4)

where Λ is the matrix with the characteristic speeds µi on the diagonal. Since the
determinant is invariant under similarity transforms, we can transform the matrix
problem in (6.3) to the equation

det(z2I − 2i sin(kh)λΛ − I) = 0. (6.5)

Since this is a diagonal matrix it follows that at least one of the diagonal entries
must vanish. It follows that for any λ there are 2m values of z, which we denote by
z±i , (i = 1, . . . , m) where for each i, z±

i are the roots of the quadratic

z2 − 2i sin(kh)λµi − 1 = 0.
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By what we have already done for the scalar case we know that | z±

i |≤ 1 if and only
if

λ | µi |≤ 1,

(in fact in this case | z±i |= 1.) In order to have stability you have to take the smallest
λ or

λ ≤ 1/ | µmax |, (6.6)

where µmax is the characteristic speed of largest magnitude. This gives the stability
bound

∆t ≤ ∆x/ | µmax | . (6.7)

This says that the stability bound for the system is the same as for the equation

ut = µux,

with µ replaced by the eigenvalue of A which has largest magnitude. It is easy to see
that this argument is general, i.e., valid for any difference scheme.

We restate this another way. For any scheme, first work out the stability bound
for the equation

ut = ux.

Call this stability bound w0. Then for a system of equations, the resulting scheme is
stable provided

∆t ≤ w0∆x/ | µmax | . (6.8)

Thus stability is determined by λ0, which is independent of the system or of the coef-
ficients, together with the maximum characteristic speed. Of course if the coefficients
are variable or nonlinear, you must use the largest characteristic speed over the whole
domain at time level n.

We have concentrated on stability, however we also want to introduce some ter-
minology for the dependent variables. Consider the matrix P defined in (6.4). If we
take the original PDE system (6.1) and make the change of dependent variable

~w = P~u, (6.9)

then it is easy to see ~w satisfies the diagonal system of equations

~wt = Λ~wx. (6.10)

Thus, the transformation (6.9) decouples the dependent variables and reduces the
coupled system (6.1) to a system of independent scalar equations. Said another
way the coupled system (6.1) is equivalent to a set of scalar equations under the
transformation (6.9). (In practice the system will still be coupled, but by boundary
conditions which we will discuss later.)
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Now let ~pT
i be the ith row of the matrix P . We use the superscript T to indicate

that ~pT
i is a row vector rather than a column vector. From the similarity transforma-

tion (6.4) and the change of variables in (6.9)it is easy to interpret what ~pT
i represents.

In terms of the decoupled variables wi we have from the rules of matrix times vector
multiplication

wi = ~pT
i · ~u,

i.e., wi is simply the standard dot (scalar) product of the ith row of the matrix P with
the column vector ~u. Furthermore, if you rewrite (6.4) as

PA = ΛP, (6.11)

then it is easy to see that ~pT
i satisfies the equation

~pT
i A = µi~p

T
i . (6.12)

From the equation (6.12) you can see why they call ~pT
i a left eigenvector of the matrix

A. This may look strange to you, but it is the standard eigenvalue equation written
in terms of row vectors and multiplication on the left instead of column vectors and
multiplication on the right.

Now from (6.10) the scalar variable wi, the ith component of ~w satisfies the wave
equation

∂wi

∂t
= µi

∂wi

∂x
, (6.13)

where we use the symbol ∂ to denote partial differentiation simply to avoid using two
subscripts. Thus, the variables that decouple the original system (6.1) are just the
result of taking the dot product between the left eigenvectors of A and the original
column vector ~u. These variables are called the characteristic variables and are very
important for the analysis and interpretation of hyperbolic systems. They are just
the variables that can be interpreted as waves traveling with speed µi. Again, while
they can be decoupled for the full space problem (i.e., the problem specified on −∞ <
x < ∞, in practice they are coupled by the boundary conditions.

It is important to see what the name characteristic means. It is clear from (6.13)
that

wi(t, x) = fi(µit + x),

where fi(x) is the initial condition for wi. Thus, the value for the characteristic
variable wi is constant along the characteristic curves in the t − x plane given by

µit + x = constant.

The hyperbolic equation (6.13) serves to propagate the initial condition for the char-
acteristic variable along the characteristic curves as time increases. In practice, of
course, things are not so straightforward since variable coefficients may lead to curved
characteristics and we will see later that some characteristics can cross for nonlinear
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problems. Furthermore, if you have a forcing term then the characteristic variable will
no longer be constant along characteristics. However, this is the natural extension of
the notion of a characteristic from a scalar equation to a system.

Finally, you should realize that if the matrix A is symmetric, the left eigenvector
is just the transpose of the ordinary eigenvector. In this case you can get the charac-
teristic variables by just computing the eigenvectors of the matrix A.

Disparate Speeds
We describe here what can happen if a system has characteristic speeds that

are greatly different. This phenomena occurs in may application areas, for example
elasticity and magneto-hydrodynamics. Suppose m = 2 so that A is a 2 × 2 matrix
with eigenvalues µ1 and µ2. Further suppose µ1 � µ2 so that µ1 corresponds to
fast waves while µ2 corresponds to slow waves. Such a situation occurs in elasticity
where there are fast compressional waves and slow shear waves. An analogous effect
can occur in acoustics (electromagnetism) if there are regions where the sound speed
(speed of light) is large and regions where it is small (see (5.25) and the discussion in
the section on the leap frog). Here, however, we will assume the constant coefficient
case with two different speeds.

Now the equation
~ut = A~ux, (6.14)

can be decoupled by working with the new dependent variable ~w = P~u where P is
the matrix that diagonalizes A. If we do this we would get two decoupled scalar
equations

w1
t = µ1w

1
x, w2

t = µ2w
2
x, (6.15)

where w1 and w2 correspond to the fast and slow waves respectively. Keep in mind
that while these waves can be decoupled mathematically, in practice they will be
coupled by boundaries or two-dimensional effects and so you solve the coupled system.

Before we always considered what happened when there was a given wave number
in x (which we always call k). However, in may problems it makes more sense to
consider what happens when there is a given frequency ω. This happens for example,
when the system is excited by an external stimulus, say a pulse-like source with peak
frequency ω. You can solve each of the equations in (6.15) explicitly to get

w1 = exp(iω(t + x/µ1)), w2 = exp(iω(t + x/µ2)). (6.16)

You can easily derive this if each wave is to oscillate with frequency ω. Now from
(6.16) you can see the important fact. For a fixed ω slower speeds correspond to
shorter wavelengths. The wavelengths for the two functions in (6.16) are

λ1 =
2πµ1

ω
, λ2 =

2πµ2

ω
,
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respectively. Thus, the waves corresponding to µ1 are over-resolved in space but
since the largest speed (µ1) determines the timestep, these waves are run with an
effective λ near the stability limit. A (2-2) scheme should work fine on them. On the
other hand, spatial resolution has to be based on the slow waves (µ2) which have the
smaller wavelengths. However, the effective λ for these waves is small, again since the
timestep is controlled by the maximum speed. You can easily see that the effective λ
for the (hard to resolve) slow waves is not large, but is rather reduced by the factor
µ2/µ1. Thus, not only do you have to spend most of your resolution to resolve the
slow waves, but the effective λ for these waves is small, so that (2-2) schemes have
large truncation errors. This situation is ideal for a (2-4) scheme. In this case you
can (and often should) run at a large time step. While (2-4) schemes are less accurate
when run near their stability limit, the timestep is set by the fast waves which are
over-resolved to begin with. So you don’t care if the overall accuracy is only second
order. On the other hand, running your (2-4) scheme near the stability limit still
results in a small effective λ for the slow waves, and thus you will see the benefits of
a (2-4) scheme. At some point, the fast wave timestep restriction will be so severe
that you may want to go to an implicit scheme. Note again, that even for problems
with one wave speed this problem can occur, for example for interface problems where
there are regions of disparate sound or light speeds.

7 IMPLICIT SCHEMES

We have already encountered the backward Euler scheme. You should expect that
implicit schemes will have enhanced stability, in fact, many implicit schemes are
unconditionally stable. Note, that for many hyperbolic problems this is not so useful.
If a solution behaves like f(µt + x) where µ is one of the characteristic speeds, then
clearly for accuracy you want µ∆t to be comparable to h. However, we saw when we
considered problems with disparate speeds, there are problems where there can be
be a lot of advantages in exceeding an explicit stability bound. Furthermore, we will
see that implicit schemes are very useful for parabolic type problems. Thus, we will
consider families of implicit schemes.

A (2-2) implicit scheme can be obtained by evaluating the time derivatives at level
n + 1/2. This scheme is called the Crank-Nicolson scheme. For the equation

ut = ux,

the scheme is

(vn+1
j − vn

j )

∆t
=

1

2

(vn+1
j+1 − vn+1

j−1 )

2h
+

1

2

(vn
j+1 − vn

j−1)

2h
. (7.1)

Note that the spatial derivatives (righthand side of (7.1)) are centered at level n+1/2
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by averaging of levels n and n + 1. It is easy to verify that this, combined with the
second order spatial differencing, makes Crank-Nicolson a (2-2) scheme.

If you do a von Neumann analysis you will get the equation

z(1 − i
λ

2
sin(kh)) = 1 + i

λ

2
sin(kh). (7.2)

You can easily see from (7.2) that | z |= 1 for all λ. Thus Crank-Nicolson is
unconditionally stable and completely non-dissipative. As with backward Euler, as-
sembling the scheme into a matrix leads to a tridiagonal system of equations which
will be closed with boundary conditions. Again as with Backward Euler, the scheme
can (and generally should) be reformulated using the δ−formulation (see (5.16)).

In comparing the Crank-Nicolson scheme with the backward Euler scheme note
that

1. Backward Euler is dissipative (except for kh near π) but only first order in time.

2. Crank-Nicolson is second order in time, but since it is non-dissipative it is prone
to oscillations and nonlinear instabilities.

A family of schemes can be derived which to some extent combines the good and
bad features of backward Euler and Crank-Nicolson. This family is defined by the
formula

(vn+1
j − vn

j )

∆t
= α

(vn+1
j+1 − vn+1

j−1 )

2h
+ (1 − α)

(vn
j+1 − vn

j−1)

2h
. (7.3)

Note that if α = 1/2 we get Crank-Nicolson while with α = 1 we get backward Euler.
The family (7.3) is second order only for α = 1/2. However, there is some dissipation
for any α > 1/2. Thus by running your program you can get some dissipation by
having α close to but greater than 1/2. In fact, you can formally get second order
accuracy by setting

α = 1/2 + α1∆t

for α1 > 0. You should understand that this is mostly a formal statement. In prac-
tice you don’t let ∆t → 0, but in fact you run with only one or at most only a small
number of different values of ∆t. The family (7.3) should also be implemented in the
δ−formulation. Generally you do not build a particular value of α into your program.
Rather you write the program with α as a variable and then set it as data when you
run the program.

Compact Implicit Schemes
While you can construct (2-4) implicit schemes analogous to Crank-Nicolson there

is a problem with these schemes. Standard fourth order differencing involves two sets
of neighbors (j ± 1 and j ± 2). When you assemble these terms in the matrix this
means you no longer have a tridiagonal matrix, but rather a pentadiagonal matrix.
These matrices are much more expensive to invert than tridiagonal matrices.
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You might think there is nothing you can do about this. After all, if we restrict
to standard finite differences then you need at least 2 neighbors on each side to get
fourth order differences. It turns out however that you can get fourth order accuracy
provided you take combinations of both the function and its derivative. This will give
you a fourth order scheme with only a 3 point stencil, however the scheme will be
implicit.

In order to see how this works consider the standard second order central difference
formula keeping the leading order term of the error (see (3.3)

ux = (u(x + h) − u(x − h))/(2h) − h2

6
uxxx + O(h4).

In order to simplify the notation let us introduce the notation D2 for the second order
central difference so we can write

ux = D2u − h2

6
uxxx + O(h4). (7.4)

Now if we were doing just central differences we would drop the uxxx term and say
we have a second order approximation. However, if we can somehow account for
this term we would have a fourth order approximation. Furthermore, we only need a
second order approximation to the uxxx term because it is multiplied by h2.

Let D̃2 be the second order approximation to uxx (see 3.24)

uxx(xj) =
(uj+1 + uj−1 − 2uj)

h2
+ O(h2) = D̃2u + O(h2). (7.5)

We can now use D̃2 to rewrite (7.4) as

D2u = ux +
h2

6
D̃2ux + O(h4). (7.6)

We can rewrite (7.6) in matrix notation as

D2u = (I +
h2

6
D̃2)ux + O(h4). (7.7)

where I is the identity matrix and we can identify D̃2 as a tridiagonal matrix (see
(7.5)).

If you neglect boundaries you see that you can now invert this matrix to express
ux in terms of u

ux = (I +
h2

6
D̃2)

−1D2u + O(h4). (7.8)

Equation (7.8) says that you can get a fourth order accurate approximation to ux using
only a three point stencil, but you have to solve a tridiagonal system of equations
to get ux from the function values u. This is the compact implicit approximation.
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Typically compact implicit spatial differencing is coupled with Runge-Kutta time
integration.

Consider the equation
ut = ux,

and as before let v denote the numerical approximation. If we consider first a semi-
discrete approximation (i.e., do not yet discretize in time) then we have the system
of ordinary differential equations

dvj/dt = (I +
h2

6
D̃2)

−1D2v. (7.9)

Note that on the right hand side all of the values of vj are coupled together. (The
inverse of a tridiagonal matrix is a full matrix.) Now you can apply any time integrator
you want to (7.9). One common scheme is Runge-Kutta. You do not explicitly
compute the inverse of

(I +
h2

6
D̃2).

Rather you write the update equations for vj and then solve a tridiagonal scheme at
each stage. In order to see how this works suppose we consider forward Euler. Note,
that this is essentially what you would do for each stage of Runge-Kutta. Letting vn

j

denote the numerical solution we have

(I +
h2

6
D̃2)(v

n+1
j − vn

j ) = ∆tD2v. (7.10)

This gives a tridiagonal matrix that has to be solved at level n + 1. Such a system
would have to be solved at each stage of Runge-Kutta. The result is a 4-4 scheme.

Note that if you use Runge-Kutta you will also not get unconditional stability
- there will still be a stability limit even though you are doing the work of an im-
plicit scheme. Generally the point of the compact implicit schemes is to get higher
accuracy without the boundary problems of increasing the stencil. Compact implicit
methods require some boundary treatment to close the tridiagonal matrix (as do all
implicit methods) and the fourth order accuracy and stability can be very sensitive to
the boundary treatment. This approach has also been extended to yet higher order
schemes (e.g., there are sixth order compact implicit schemes).

Implicit Schemes for Systems
There is one more issue that you should consider when using implicit schemes.

Suppose instead of a scalar equation you consider an m × m system of equations

~ut = A~ux. (7.11)

You can use any of the implicit schemes that we have discussed for (7.11). Consider for
concreteness Crank-Nicolson. However, there is one big difference between the system
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case and the scalar case. In the scalar case these systems give rise to tridiagonal
matrices. It is very easy and efficient to solve tridiagonal systems of equations. In
fact if you have n points, tridiagonal systems can be solved in O(5n) operations.
There is also a lot of free software to solve tridiagonal systems of equations so you
should never have to write your own program.

In the system case you get a block tridiagonal system of equations. That is you
get a system of equations that is tridiagonal in structure if you look at blocks of
size m, the size of the system. In this case the solution process is still easy and still
proportional to the number of points n, however you must invert each block. The
cost of doing such an inversion is O(m3) as each block is typically full and the cost of
Gaussian elimination on a full m×m matrix is O(m3). Thus the cost of inverting the
block tridiagonal matrix for an implicit scheme for systems is now O(m3n). Generally
you think of n as a number that can be large while m is typically O(1) and is fixed
by the problem. This is a reasonable way to think of things when you consider the
asymptotic limit h → 0. However, in practice increasing m can have a dramatic effect
on the cost (computer time) of a computation. For example, if m increases from 2 to
3, m3 increases from 8 to 27, more than a threefold increase.

Thus you should be aware that the cost of an implicit scheme for systems rises
rapidly as the size of the system increases. In some special cases there is a special
structure to the blocks that you can take advantage of when you invert the blocks,
but generally you have a full block which must be inverted at each grid point.

8 SEMI-IMPLICIT SCHEMES

In some problems you may want to be implicit on some terms but not on others.
Consider the equation

ut = ux + R(u), (8.1)

where R(u) is a given nonlinear function. This models what happens in chemistry for
example, where there are nonlinear chemical reaction terms. Thus (8.1) is a model
of an advection-reaction equation (the ux term models the advection of disturbances
while the R(u) term models the reaction.)

Suppose you wanted to be implicit on the whole equation (8.1). For simplicity,
suppose you wanted to use Crank-Nicolson. In this case at each time step you would
have a system of nonlinear equations to solve. This can be enormously more expensive
and difficult to solve than the system of linear equations you get without the nonlinear
reaction term. In order to solve a nonlinear system of equations you would typically
use Newton’s method for systems. If you wrote the system as

~F (~u) = 0,
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the analogue of Newton’s method for systems is

~un+1 = ~un − J(~un)−1 ~F (~un),

where J is the Jacobian matrix for ~F (i.e, the matrix of all partial derivatives of the

vector function ~F ). Thus, in order to appy Newton’s method for systems you must
compute J at each iteration and then compute its inverse. While there are approaches
to reduce some of the computations, this is typically very computationally intensive.

One approach to this class of problems is to use semi-implicit schemes. These
schemes are implicit on some terms (for example the linear term in (8.1)) and ex-
plicit on other terms (in this case the nonlinear reaction term). The most common
semi-implicit scheme is the Crank-Nicolson Adams-Bashforth scheme, which combines
the implicit Crank-Nicolson scheme with the explicit second order Adams-Bashforth
scheme. The Adams-Bashforth family of schemes is a family of explicit schemes for
ordinary differential equations that uses previous timesteps to update to the new
timestep.

The scheme is

(vn+1
j − vn

j )

∆t
=

1

2

(vn+1
j+1 − vn+1

j−1 + vn
j+1 − vn

j−1)

2h
+

3

2
R(vn

j ) − 1

2
R(vn−1

j ). (8.2)

The explicit treatment is exactly the second order Adams Bashforth scheme. Those
of you who have studied numerical methods for ordinary differential equations may
be aware of it. You can see that it is second order by simple manipulation of Taylor
series.

You can ask why this choice for the explicit component of a semi-implicit scheme.
In fact second order Adams Bashforth has a relatively large truncation error due to
the wide stencil in time (i.e., time level n−1) and the highly uncentered nature of the
scheme. However, in a semi-implicit scheme the major expense at each timestep is
due to the solution of the equations (in this case linear) that you get from the implicit
scheme. It is important that the explicit component involve as few stages as possible
so as to minimize the number of times you have to solve these equations. Thus
for efficiency considerations Adams Bashforth is generally preferred to a predictor
corrector type scheme (for example like Runge-Kutta) which would require 2 solutions
of the implicit equations for each timestep. However, the use of a more centered
explicit scheme can give more accuracy.

By now you should be able to think of other variations of semi-implicit schemes.
For example you can use the general family of schemes defined in (7.3) where the
parameter α is a free parameter. Furthermore, the implicit equations should gener-
ally be solved using the δ−formulation. An alternative to semi-implicit schemes is
operator splitting which we will discuss in the context of 2 dimensional problems.
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9 PARABOLIC PROBLEMS

We consider the basic heat equation

ut = auxx, (9.1)

where we have explicitly indicated the diffusivity a. Many of the schemes that we have
discussed previously can be applied to (9.1). However, you should realize that leap
frog is not one of them. (See the discussion of artificial dissipation and the analysis
leading up to (5.31).)

However, there is a problem with explicit schemes applied to parabolic equations.
This is that stability often requires a timestep restriction of the form

∆t/h2 ≤ w0. (9.2)

Equation (9.2) says that if you cut h in half, the maximum stable timestep decreases
by a factor of four. Thus explicit schemes are very restrictive in terms of timestep.

Before we prove this, you should suspect some restriction of the form (9.2) simply
on the grounds of dimensional scaling. Consider a hyperbolic equation,

ut = cux.

In this equation c has units of speed (length/time). Thus λ = c∆t/h is nondimen-
sional and it is reasonable to get a stability bound of the form λ ≤ w0. Examination of
(9.1) indicates that a has unites of length2/time. Thus a∆t/h is not nondimensional
and can not be obtained from a stability analysis. (In contrast a∆t/h2 is nondi-
mensional and is in fact what you typically get as a stability restriction for explicit
schemes.)

In order to illustrate this, consider the forward Euler scheme applied to (9.1),

vn+1
j = vn

j + a
∆t

h2
(vn

j+1 + vn
j−1 − 2vn

j ). (9.3)

We can do the von Neumannn analysis exactly as we did before. Set

vn
j = zn exp(ikhj),

and plug into (9.3). We get

z = 1 − 2a
∆t

h2
(1 − cos(kh)). (9.4)

Note that the main difference between the second derivative and the first derivative
case is that for ux the central difference approximation gives you terms like i sin(kh)
while for the second derivative you get terms like 1 − cos(kh). It follows from (9.4)
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that we always have z ≤ 1. Thus in order to get stability (| z |≤ 1) we must find
conditions such that

z ≥ −1.

For any value of kh this implies

a
∆t

h2
≤ 1

1 − cos(kh)
. (9.5)

In order to have stability, you must have stability for all kh. This means that you
must make the denominator on the righthand side of (9.5) as big as possible, namely
set kh = π. This gives the stability bound for forward Euler as

∆t ≤ h2

2a
. (9.6)

For other explicit schemes the constants will vary, but the scaling of ∆t with h2 will
remain the same.

This severe timestep restriction makes explicit schemes very inefficient for most
parabolic equations. Instead implicit and semi-implicit schemes are used. The implicit
schemes include backward Euler, Crank-Nicolson and the general scheme defined in
(7.3). Another thing that you should be aware of is that implicit schemes for parabolic
equations generally lead to much better conditioned matrices than for hyperbolic
equations. For example, suppose you were doing backward Euler on (9.1). If we set

β = a
∆t

h2
,

we get the following system of equations

(1 + 2β)vn+1
j − βvn+1

j+1 − βvn+1
j−1 = vn

j . (9.7)

Notice that the effect of the second derivative is to make the coefficient of vn+1
j (which

is also the diagonal of the matrix) larger. Said another way the matrix becomes more
diagonally dominant. (A matrix is said to be diagonally dominant if for each row
the absolute value of the diagonal element is greater than the sum of the absolute
value of all of the off diagonal elements in that row.) Thus diagonally dominant
matrices look (and often act) like diagonal matrices. It is generally the case that the
more diagonally dominant a matrix is (i.e., the bigger the diagonals become relative
to the off diagonals) the better conditioned the matrix becomes, i.e., there is less
chance of numerical errors in performing the Gaussian elimination. In addition, such
matrices are typically more amenable to iterative methods of solution. Observe that
in contrast when you have ux on the righthand side and do central differencing it does
not contribute to making the diagonals bigger (see 5.14)).

Semi-implicit schemes are very common when you have reaction-diffusion or reaction-
advection-diffusion equations. For example, suppose you had an equation of the form

ut = uxx + ux + R(u). (9.8)
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At this point you should be able to identify the physical role of each term on the right-
hand side, uxx corresponds to diffusion or dissipation, ux corresponds to advection,
R(u) corresponds to reaction. In many instances the parabolic timestep restriction is
very limiting. Thus you would want to be implicit on the parabolic terms, but do not
want to be implicit on the advection or reaction terms. In this case you would use
a semi-implicit scheme, Crank-Nicolson on the diffusion terms, second order Adams-
Bashforth on all of the rest of the terms. Note that such a scheme would not be
unconditionally stable, but it would not have the severe parabolic stability bound.

One problem in solving parabolic problems with implicit schemes is that you have
to experiment with the timestep. You will be using a scheme that is unconditionally
stable, but which could be very inaccurate if the timestep is too large. Thus you
may have to experiment until you get an accurate ∆t. In order to illustrate what can
happen if you are not sufficiently careful with the timestep, we will discuss one such
scheme, namely the Dufort-Frankel scheme.

Consider the simple heat equation

ut = uxx,

with leap frog time differencing,

vn+1
j − vn−1

j =
2∆t

h2
(vn

j+1 + vn
j−1 − 2vn

j ). (9.9)

You should know by now that this scheme is unstable (see the argument leading up
to (5.31)). In the Dufort-Frankel scheme (9.9) is stabilized by taking the vn

j term on
the righthand side and averaging at levels n + 1 and n − 1. The resulting scheme is

vn+1
j − vn−1

j = 2
∆t

h2
(vn

j+1 + vn
j−1) − 2

∆t

h2
(vn+1

j + vn−1
j )). (9.10)

Note that (9.10) is implicit but in a very simple way as you can still solve directly for
vn+1

j . If we rewrite the scheme we get

(1 + 2
∆t

h2
)vn+1

j = (1 − 2
∆t

h2
)vn−1

j + 2
∆t

h2
(vn

j+1 + vn
j−1). (9.11)

You can see that the coefficient of vn+1
j becomes larger due to the implicit scheme.

Thus you make things smaller when you solve for vn+1
j . This is always a good sign that

you are stabilizing things. Another way to look at it is that the matrix (now diagonal)
becomes even more diagonally dominant if you increase ∆t. We will not do the von
Neumann analysis, but it is easy to do and to find that (9.10) is unconditionally
stable.

You may think this is great, because you now get stability with no matrix to
invert. But suppose we do a simple rearrangement of (9.11). We can write

vn+1
j − vn−1

j = 2
∆t

h2
(vn

j+1 + vn
j − 2vn

j ) − 2
∆t

h2
(vn+1

j + vn−1
j − 2vn

j ). (9.12)
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Now suppose we manipulate the last term on the righthand side of (9.12) to get

vn+1
j − vn−1

j

2∆t
=

vn
j+1 + vn

j−1 − 2vn
j

h2
− (

∆t

h
)2

(vn+1
j + vn−1

j − 2vn
j )

∆t2
. (9.13)

Now suppose you take advantage of the large timesteps to choose ∆t → 0 and h → 0
in such a way that λ = ∆t/h is constant. The lefthand side of 9.13) converges to vt.
The first term on the righthand side converges to vxx which is what we have in the
original equation. However, look at the second term in the righthand side of (9.13).
As ∆t → 0 this term converges to −λ2vtt. Thus the limiting partial differential
equation under the condition ∆t/h = λ is

vt = vxx − λvtt,

which is the wrong equation. If of course you took ∆t → 0 and h → 0 in such a way
that β = ∆t/h2 is constant you would get the right equation.

In practical computations you may have to do a lot of experimentation with the
timestep. If you are interested only in stationary steady states (i.e., solutions which for
large time are independent of t), then you probably can get away with large timesteps.
If you are interested in the transient you will have to be more careful. You will often
not know in advance the timescale on which the solution varies. This is particularly
true for nonlinear problems. Remember that in practice you do not let ∆t → 0 and
h → 0. Rather you make only a few computations and verify that the numerical
solutions are converging to something. In this case you will have to be very careful in
how you access the accuracy of your solution, particularly in regards to errors in time.

Boundary Conditions
We next consider appropriate boundary conditions for parabolic problems. Gener-

ally, the numerical treatment of boundary conditions for parabolic problems is much
easier than for hyperbolic problems so we deal with parabolic problems first. Consider
the heat equation on a bounded interval, for example

ut = uxx 0 ≤ x ≤ 1.

Generally you expect to have to impose 2 boundary conditions. You can see why by
considering what happens at steady state, i.e., if ut = 0. In this case you have the
second order equation uxx = 0 which needs 2 boundary conditions. For parabolic
problems you typically impose one boundary condition at each endpoint.

You can impose any combination of u and ux. The most general representation of
the boundary conditions is

αu(0, t) + βux(0, t) = f0(t) (9.14)

γu(1, t) + δux(1, t) = f1(t)
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Boundary conditions of the general form (9.14) are called impedance boundary con-
ditions. In the special case β(δ) = 0 the boundary condition is called a Dirichlet
boundary condition, while if α(γ) = 0 the boundary condition is called a Neumann
boundary condition.

Dirichlet boundary conditions can be implemented easily in implicit schemes, sim-
ply by using the boundary condition as the equation for a boundary point. For exam-
ple if you have a Dirichlet boundary condition and you use the δ−formulation then
the equation for the boundary point would simply be

δ0 = f0(t + ∆t) − f0(t).

There are many ways to implement boundary conditions involving derivatives. One
of the most common and most robust is by using what are called fictitious points.
Suppose that at x = 0 you want to impose the boundary condition

ux(0, t) = 0.

This boundary condition can be implemented by adding a fictitious point at j = −1.
When you add an additional point you need an additional equation. The additional
equation is the boundary condition. To see how this works, suppose we use vn

j to
denote the numerical solution. Suppose further that we were using Backward Euler.
Then at j = 0 we would have two equations,

vn+1
0 = vn

0 + ∆t
vn+1
1 + vn+1

−1 − 2vn+1
0

h2
,

vn+1
1 − vn+1

−1

2h
= 0.

The case of general impedance conditions can be handled similarly.

10 INITIAL BOUNDARY VALUE PROBLEMS

We next consider the effect of boundaries for hyperbolic problems. For simplicity we
first consider problems defined on a half open interval (e.g., problems defined on the
interval −∞ < x ≤ 0). Boundaries can introduce two complications to numerical
methods.

1. Sometimes boundary conditions must be imposed as part of the given equation

2. Whether or not this is true, some numerical procedure must be imposed to
deal with the fact that grid points to the left or right of the boundary are not
available.
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We refer to the first point as the problem of boundary conditions, while we refer to
the second point as the problem of numerical boundary conditions.

We consider first just the problem of boundary conditions. Thus we consider
PDEs without finite difference approximations.

Consider first the wave equation

ut = ux, (10.1)

where the problem is defined on the interval

−∞ < x ≤ 0.

We certainly need initial data at t = 0,

u(0, x) = f(x). (10.2)

Should we impose a boundary condition at x = 0?
In order to understand this problem, it is convenient to consider (10.2) as a prob-

lem in the x − t plane, with x as the horizontal axis and t as the vertical axis. Thus
the boundary in the x− t plane is the vertical axis x = 0. We know the exact solution
to (10.1). The solution is

u(t, x) = f(t + x). (10.3)

Thus initial data is carried along the characteristic lines

t + x = c,

where c is a constant (see the discussion on upwind schemes right after (4.22)).
Now you can ask whether the solution (10.3) is sufficient to determine the solution

to the partial differential equation for all values of t. The answer is no. Suppose for
example you look at values of t and x such that x + t = 1. The initial data f(x) is
not defined for this value of t + x. In fact from (10.2) you can only assume that f(x)
is defined for x ≤ 0.

Thus in the presence of boundaries the characteristic curves emanating from the
initial line (t = 0) can not determine the solution for all values of t. What happens is
that the initial data determines the solution only up to the bounding characteristic
curve t + x = 0. Beyond that the initial data does not determine the solution.

You can now ask how you would determine the solution at such a point. For
concreteness take a specific point, x = −2, t = 3. Since you know that the solution is
constant on the characteristic curve x + t = 1 you can continue this curve backwards
(i.e., let x decrease). You can see that the characteristic curve intersects the boundary
x = 0 before it hits the initial line t = 0. In order to get values for the solution along
this characteristic curve we must impose a boundary condition along this line,

u(t, 0) = g(t). (10.4)
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This makes sense geometrically, but there is another way to see that you need a
boundary condition that is more analytic in nature. Consider just (10.1-10.2). You
can ask whether this problem is well posed or not. Let’s look for solutions of the form

u(t, x) = exp(σt) exp(µx) µ > 0. (10.5)

This may look similar to the Fourier analysis that we did for problems defined on the
whole line, but there is a difference. Solutions with spatial dependence of the form
exp(µx) are not allowed when you consider problems posed on the infinite interval
−∞ < x < ∞, because they blow up as x → ∞. However, now that we have only the
half open interval −∞ < x ≤ 0, these solutions have a perfectly reasonable spatial
dependence and you would expect to have bounded solutions if the problem were well
posed. Note that you do not expect Fourier type solutions, because you expect there
to be a regularity condition at −∞, e.g., the solution goes to 0 as x → −∞. Those
of you who have encountered Laplace transforms should be familiar with this.

Suppose we substitute (10.5) into (10.1). We will find σ = µ > 0. Thus if we
do not impose any boundary condition, we will get solutions that are perfectly well
behaved in x but explode exponentially as t increases, in fact solutions that grow as
exp(µt) for any µ > 0. Such a problem cannot be well posed.

Now suppose that you did impose a boundary condition of the form (10.4) with
g(t) bounded. Then clearly you can not get exponentially growing solutions of the
form (10.5). Thus imposition of a boundary condition filters out the exponentially
growing solutions and makes (10.1) well posed. Also observe that if you want your
solution to be continuous g(t) can not be arbitrary. There is a compatibility condition
that must be satisfied at the origin of the x − t plane,

g(0) = f(0),

If this condition is violated you still get solutions, however there will be a discontinuity
across the bounding characteristic curve t + x = 0.

You should try to think geometrically about what this implies. The family of
characteristic curves x+ t = c moves to the left as t increases. Thus the characteristic
curves enter the computational domain −∞ < x ≤ 0 as t increases. In this case you
must impose a boundary condition in order for the problem to be well posed.

What if characteristic curves leave the computational domain as t increases? In
order to consider this case consider the same equation (10.1) but now on the interval

0 ≤ x < ∞.

In this case should you impose a boundary condition? The answer is no. The char-
acteristics travel to the left. Thus in the x − t plane every point on the t axis (the
vertical line x = 0) can be reached by a characteristic propagating from the interior
of the domain. Thus the solution at x = 0 is completely determined from the initial
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condition (i.e., from the interior) and no boundary condition is needed nor should
one be imposed.

You can also ask if you still have exponentially growing solutions. Instead of (10.5)
you now have to consider solutions that decay as x → ∞. Thus look for solutions of
the form

u(t, x) = exp(σt) exp(µx) µ < 0. (10.6)

From the equation (10.1) you now get σ = µ < 0. Thus these solutions decay as t
increases and do not signify that the problem is ill posed.

Of course you could argue that you want to consider solutions that grow like
exp(µx) with µ > 0. These solutions grow as x → ∞ and also will grow exponentially
in time. However, these solutions are excluded from the analysis. Usually when you
consider well posedness it has to be considered in the context of a certain space of
solutions. The natural space to consider is L2(0,∞) or some other space where the
solutions have some sort of regular behavior near x = ∞. Said another way, even
though no boundary condition is imposed at ∞, you are assuming that the solutions
satisfy certain regularity or integrability conditions near ∞.

Alternatively, suppose we consider the equation

ut = −ux, (10.7)

defined on the interval
−∞ < x ≤ 0,

with initial condition
u(0, x) = f(x). (10.8)

Should we impose a boundary condition at x = 0? The solution to (10.7) is now con-
stant on characteristic curves t − x = c, i.e., lines sloping at 45◦ in the plane. Since
the characteristic curves slope to the right the solution at x = 0 is now completely
determined from the solution in the interior. You do not need a boundary condition.
To impose a condition would be overspecifying the solution. In fact, it could make
things worse because there would be an incompatibility between the condition that
you impose and the values that the solution ’wants” to take at x = 0. This can also
be seen analytically by looking for exponential solutions as in (10.5). You now get
σ = −µ so that these solutions decay in time and the problem is well posed without
boundary conditions.

Boundary Conditions for Systems
Let’s next look at the two way wave equation written as a first order system,

(

u
v

)

t

=
(

0 1
1 0

) (

u
v

)

x

, −∞ < x ≤ 0, (10.9)

with initial conditions

u(0, x) = f1(x), v(0, x) = f2(x), −∞ < x ≤ 0.
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Now you know that the eigenvalues of the matrix in (10.9) are ±1. This means
that the characteristic speeds are ±1, so that there are solutions that behave like x+t
and solutions that behave like x − t. By simple manipulation of the (10.9) it is easy
to see that u + v satisfies

(u + v)t = (u + v)x,

while u − v satisfies
(u − v)t = −(u − v)x.

These are called the characteristic variables of (10.9).
What do you expect you will have to do for boundary conditions? By what

we have done for the scalar case you should expect to have to impose 1 boundary
condition at x = 0 to account for the wave that travels on the leftward moving family
of characteristic curves x + t = c. You can see this analytically. Look for solutions of
the form

(

u
v

)

= exp(σt) exp(µx)
(

ũ
ṽ

)

, (10.10)

with µ > 0 (corresponding to solutions that decay exponentially as x → −∞). Plug-
ging (10.10) into (10.9) we get

σ
(

ũ
ṽ

)

= µ
(

0 1
1 0

) (

ũ
ṽ

)

. (10.11)

Since the eigenvalues of

A =
(

0 1
1 0

)

,

are ±1 it follows that
σ = ±µ

and that
(

ũ
ṽ

)

,

must be an eigenvector of A. The “bad” solutions, i.e., those with σ > 0 correspond
to the eigenvalue +1 of A, that is to the characteristic variable u+ v (the eigenvector
(

1
1

)

of A).

Thus the the equation (10.9) by itself is ill posed. If, however, we impose the
incoming characteristic variable u+ v at x = 0 we rule out the exponentially growing
solutions and the system becomes well posed. Ideally we would want to have a
boundary condition of the form

u(t, 0) + v(t, 0) = g(t). (10.12)

Boundary condition (10.12) will give a well posed problem and is natural from the
point of view of the characteristic variables. However, it is not the most general
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boundary condition that you can have. For example, suppose you had a boundary
condition of the form

u(t, 0) + v(t, 0) = γ(u(t, 0) − v(t, 0)) + g(t). (10.13)

Then we would express the incoming characteristic variable in terms of the outgoing
characteristic variable and prescribed data. Note that by setting γ = ±1 we can
impose either of the two unknowns u or v.

You can see that boundary conditions of the form (10.13) also lead to well posed
problems by excluding the growing solutions. In fact any growing solution is of the

form (10.10) with
(

ũ
ṽ

)

an eigenvector of A corresponding to the eigenvalue 1 (i.e.,

to a solution obtained by adding u(t, x) + v(t, x)) and exponential growth is ruled
out for such solutions by the boundary condition (10.13). On the other hand sup-
pose that you imposed a boundary condition on the “wrong” characteristic variable,
u(t, x)− v(t, x), corresponding to the eigenvalue −1. It is easy to see that you would
now still get growing solutions, i.e., the problem would then be ill posed. Note that
geometrically you can think of the characteristic variable u(t, x) − v(t, x) as leaving
the computational domain at x = 0 (propagating from left to right), while the char-
acteristic variable u(t, x)+v(t, x) enters the computational domain at x = 0 from the
outside, so you need a boundary condition.

Thus you can see that boundary conditions play two (related) roles:

1. Prescribe the value of incoming characteristic variables, either directly or as
some combination of outgoing characteristic variables and prescribed data.

2. Rule out solutions which grow exponentially in t with arbitrarily large growth
rates, but which are well behaved in x.

General System
Now let’s consider a general system of m equations,

~ut = A~ux, −∞ < x ≤ 0, (10.14)

where A is an m × m matrix. How many conditions should you impose at x = 0?
Let’s suppose for simplicity that A does not have zero as an eigenvalue. Let A have
r positive eigenvalues and m − r negative eigenvalues. By what we have already
done, the r positive eigenvalues correspond to incoming characteristic variables while
the m− r negative eigenvalues correspond to outgoing characteristic variables. Thus
you should expect that you would have to impose r conditions corresponding to the
incoming characteristic variables.

Now let ~eT
1 , ~eT

2 . . . ~eT
r be the left eigenvectors of A corresponding to the r positive

eigenvalues. Let I be the matrix with rows ~eT
1 , ~eT

2 . . . ~eT
r . Thus I is a matrix of size
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r×m. Note that I does not stand for the identity matrix. We are using this notation
because I will be used to obtain the incoming characteristic variables. Similarly let
~fT
1 , ~fT

2 . . . ~fT
m−r be the m − r left eigenvectors for the negative eigenvalues and let O

(representing outgoing) be the corresponding (m − r) × m matrix. We now define

~uI = I~u, ~uO = O~u,

which are exactly the incoming and outgoing characteristic variables. Ideally you
would like a boundary condition which imposes exactly ~uI, the incoming characteristic
variables. However, (10.14) will be well posed with any boundary condition of the
form

~uI = S~uO + ~g(t), (10.15)

where S is an r × m − r matrix and ~g(t) is an r−vector which is bounded in t.
Equation (10.15) gives a prescription as to what to do at a single boundary point.

In practice you solve equations such as (10.14) on a bounded domain, say a ≤ x ≤ b.
In this case you have to look at the incoming and outgoing characteristics curves and
variables at each boundary point. For example, the right boundary point x = b is like
x = 0 in the preceding example. The incoming characteristic variables correspond
to the positive eigenvalues. Thus you must impose a boundary condition for each
positive eigenvalue (i.e., r boundary conditions for the example above). At the left
boundary x = a the roles of the positive and negative eigenvalues are reversed and you
must impose a boundary condition for each negative eigenvalue (i.e., m− r boundary
conditions for the example above).

In applications A need not be just a constant. For example, suppose A depends on
x and t. Then you have to look at the frozen coefficient matrices A(a, t) and A(b, t).
Note that it may very well be the case that the number of positive and negative
eigenvalues (i.e., the number of required boundary conditions) may change in time.

Finally, consider a system of conservation laws

~ut = ~f(~u)x. (10.16)

In this case you have to rewrite (10.16) using the chain rule,

~ut = J(~u)(~u)x,

where J(~u) is the Jacobian matrix. (In applications J will be evaluated for the current
solution, J(~un)). For each boundary point you must count the number of positive
and negative eigenvalues and impose boundary conditions accordingly. It is definitely
possible that the required number of boundary conditions will change in time.

We next address the issue of what to expect if you do not follow the boundary
condition rule described above completely. From what we showed if you have an in-
coming characteristic variable and do not impose a boundary conditions then you get
exponentially growing solutions. On the other hand if there is an outgoing character-
istic variable and you happen to (incorrectly) impose a boundary condition on that
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variable the solution will be bounded but inaccurate. In practice the solution will not
blow up but will be oscillatory near the boundary where the superfluous boundary
condition is imposed. Thus as a general rule:

• Underspecification is unstable.

• Overspecification is stable but can lead to oscillations (and possibly nonlinear
instabilities).

It is possible that in some circumstances (highly nonlinear problems which are prone
to instabilities) overspecification can stabilize what would otherwise be an unstable
computation.

Example - Linearized Euler Equations
As an example of this theory of boundary conditions we consider the linearized

Euler equations in 1 dimension. The Euler equations govern the motion of an inviscid
gas, i.e., a gas in which viscous effects are negligible. The Euler equations are nonlin-
ear and can be derived from general principles of conservation of mass, momentum
and energy. One important application of the Euler equations occurs when we have
small disturbances superimposed on a spatially constant ambient state. In this case
some of the disturbances are acoustic in nature. They represent what we hear as
sound. In many computations involving the Euler equations in general, and acoustics
in particular, boundary conditions play a crucial role.

We will use the variables ρ, u and p to stand for the density, x−velocity and
pressure respectively. The Euler equations in non-conservation form are

ρt + uρx + ρux = 0 (10.17)

ut + uux +
1

ρ
px = 0

pt + upx + γpux = 0.

where γ is the ratio of the specific heat at constant pressure to the specific heat at
constant volume (γ = 1.4 for air). You can identify the first equation in (10.17) with
conservation of mass, the second equation with conservation of momentum and the
third equation with conservation of energy. This identification would be more appar-
ent if we wrote the system in conservation form, but for the purpose of linearizing
the equations to describe acoustic waves it is preferable to consider the system in
non-conservation form.

Now suppose there is a spatially constant ambient state ρ0, u0 and p0. Further
suppose that you assume that the solution to (10.17) can be written in the form

ρ = ρ0 + ρ′, u = u0 + u′, p = p0 + p′, (10.18)
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where we assume that the primed variables in (10.18 are so small that terms that are
quadratic in them can be neglected. We then plug (10.18) into (10.17) and linearize
to get the linearized Euler equations

ρ′

t = −u0ρ
′

x − ρ0u
′

x (10.19)

u′

t = −u0u
′

x −
1

ρ0

p′x

p′t = −γp0u
′

x − u0p
′

x.

Note that we have used the fact that spatial derivatives of the ambient (mean)
state vanish. The system (10.19) describes the propagation of sound in the ambi-
ent medium. If you assume that the disturbance is isentropic, then ρ′ is proportional
to p′ you can derive a second order wave equation for p′.

Now drop the primes for simplicity, take u0 ≥ 0 and consider (10.19) on the finite
interval a ≤ x ≤ b. The boundary point x = a is often called an inflow boundary since
the flow field is entering the computational domain at this point from the outside (i.e.,
u0 > 0). How many boundary conditions should you impose at an inflow boundary?
By what we have already done you impose boundary conditions according to the
negative eigenvalues of the matrix on the righthand side of the equations, i.e., the
matrix A where

A = −







u0 ρ0 0
0 u0

1

ρ0

0 γp0 u0





 . (10.20)

After some fairly simple linear algebra you can find that the eigenvalues of A (char-
acteristic speeds of the system) are

−u0, ±c0 − u0,

where c0 =
√

γp0/ρ0 is the speed of sound in the ambient medium.
Now there are two cases to consider. If u0 > c0 the flow at inflow is called

supersonic because the flow velocity is greater than the speed of sound. In this case
all eigenvalues are negative and so you impose all three variables at the boundary. If
u0 < c0 the inflow boundary is called subsonic. In this case you impose two boundary
conditions corresponding to the incoming characteristic variables. By looking at the
left eigenvectors of A you can see that the characteristic variable corresponding to
the eigenvalue −u0 is c2

0ρ − p. This corresponds to an entropy disturbance. The
characteristic variable corresponding to the eigenvalue −(c0 + u0) is p + ρ0c0u while
the characteristic variable corresponding to the eigenvalue −(−c0 + u0) is p − ρ0c0u.
These correspond to acoustic disturbances. Thus for a subsonic inflow the acoustic
disturbances propagate in opposite directions while for a supersonic inflow all acoustic
disturbance propagate to the right (this is usually called the downstream direction).

At a subsonic inflow you would like to impose c2
0ρ − p and p + ρ0c0u. Often you

don’t know this and have to specify other variables such as ρ and u. Observe that you
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would never specify both p and u. This would correspond to specifying the outgoing
characteristic variable p − ρ0c0u.

The boundary at x = b is called an outflow boundary because the flow is moving
out. Here you have to impose according to the positive eigenvalues of A. If u0 > c0

this is called supersonic outflow and you do not specify any boundary condition. If
u0 < c0 this boundary is called a subsonic outflow boundary and you must specify one
boundary condition. What you would like to do is to specify the outgoing acoustic
variable p − ρ0c0u.

The problem of a subsonic outflow boundary is a classic problem in fluid dynamics.
Often you do not have enough information to impose any condition at a subsonic
outflow boundary. In contrast you may know everything that happens at inflow and
would like to impose 3 conditions. Mathematically this is not correct. There have
been many attempts to come up with a subsonic outflow boundary condition. In
one dimension it is not too difficult. You make the assumption that all disturbances
radiate outward from the computational domain. Thus you expect no information to
enter the domain from +∞. Mathematically this translates into setting the incoming
characteristic variable to be its value at +∞, i.e.,

p − ρ0c0u = 0. (10.21)

Equation (10.21) is also an example of what is commonly called a non-reflecting
boundary condition or a radiation boundary condition. Suppose you are really given
the problem on the interval a ≤ x < ∞. Thus you have no outflow boundary. All you
know is that no radiation is propagating inward from ∞ (i.e., there are no sources
of noise for large x). In practice you can only solve on a finite domain. Thus you
must introduce an artificial boundary at say x = c > a. You must come up with
a boundary condition to impose. The natural boundary condition is to impose that
there is no disturbance corresponding to the incoming characteristic variable.

Note that this is not always so easy to implement in practice. For example, you
may be solving the full Euler equations, not the linearized equations and you may not
know exactly what to take for the ambient flow, e.g., p0, u0 and ρ0 in order to define
the disturbance. Said another way you may not know what to linearize the equations
about. You may linearize about the previous timestep or make some estimate of
what the ambient state should be. This entire theory is much more difficult in 2 and
3 dimensions. In this case you cannot readily get the incoming characteristic variable
and you have to do a significant amount of modeling and analysis in order to get a
reasonable boundary condition.
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11 Numerical Treatment of Boundary Conditions

When you use finite difference schemes to approximate initial boundary value prob-
lems you have to face both the analytic issues of boundary conditions that we have
described above together with some purely numerical issues.

In order to see what these issues are consider the equation

ut = ux, 0 ≤ x ≤ 1, (11.1)

combined with appropriate initial conditions. From what we have already seen no
boundary condition is required at x = 0, while a boundary condition is required at
x = 1. Now suppose that we approximate (11.1) by some finite difference scheme, for
example leap frog

vn+1
j = vn−1

j + λ (vn
j+1 − vn

j−1). (11.2)

You should see directly from (11.2) that although no boundary condition need be
imposed at x = 0 there is a numerical problem. The scheme (11.2) cannot directly
be applied at x = 0. Suppose x = 0 corresponds to j = 0. Then in order to apply
the scheme at j = 0 you will need a point at j = −1. You do not have such a point.
This is an example of a problem that is purely numerical. The numerical scheme
forces you to do some boundary treatment whereas no special treatment is required
for the partial differential equation. Such problems require what is called a numerical
boundary treatment.

Before we go on you might ask what causes this problem. This problem is directly
related to the use of central differences. If you used one-sided differencing, i.e., a
purely upwind scheme (see the discussion after (4.19)) then you would not need any
special boundary treatment at j = 0. The upwind scheme follows the direction of
propagation of information and requires no numerical treatment when a boundary
condition is not applied. You might ask why we just don’t go ahead and use upwind
schemes. Such schemes are fairly straightforward for scalar equations. The problems
arise when you try to use upwind schemes for systems of equations. In this case you
can have waves propagating in different directions, i.e., you would have to use differ-
encing in different directions for different components of the solution. Said another
way, you would be forced to diagonalize the system into characteristic variables at
each timestep and for each spatial point. Such a method could be very expensive
and complicated. In most instances central differences are employed to avoid such a
decoupling, however they cause numerical difficulties.

You can now ask what about x = 1. Since a boundary condition must be imposed
at x = 1 you might think that there is no problem there. But suppose you were using
the (2-4) leap frog,

vn+1
j = vn−1

j + λ (
4

3
(vn

j+1 − vn
j−1) −

1

6
(vn

j+2 − vn
j−2)). (11.3)

Now think about applying (11.3) at the boundaries. Certainly at x = 0 (j = 0) there
is a problem as with the (2-2) leap frog (11.2). However, there is also a problem at
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the first grid point in from the boundary, j = 1. At j = 1 you need data at j = 0 and
j = −1 in order to apply the scheme. Thus higher order schemes with wider stencils
require numerical boundary treatments for more points than low order schemes with
smaller stencils.

There is also a problem at the right boundary x = 1. Suppose that this point has
index N . Then you will have given boundary data at j = N . However, in order to
apply the scheme at j = N − 1 you need data at j = N (this is given boundary data)
and at j = N + 1 which you do not have. Thus higher order schemes also require
numerical boundary treatments even at points for which a boundary condition is
given.

There are 3 points to consider for numerical boundary treatments.

1. What about accuracy? Since you generally do central differencing in the interior
but cannot do central differencing at the boundaries you might have difficulty
maintaining accuracy at the boundary.

2. What about stability? You should now have many examples from the von
Neumann analysis that perfectly reasonable treatments for the initial value
problem can give rise to numerical instabilities. In the same way perfectly
reasonable boundary treatments can give rise to instabilities for initial value
problems. These can be analyzed in a manner similar to the von Neumann
analysis, but the analysis is much harder.

3. In applications you will have two boundaries as in (11.1) above. How can you
analyze the problem with two boundaries, in particular issues of accuracy and
stability?

We can give an answer to point 3 immediately. For any given boundary treatment
it can be shown that it is sufficient to consider each boundary treatment individually.
That is for equation (11.1) above you only have to analyze problems on the intervals
0 ≤ x < ∞ and −∞ < x ≤ 1. (The precise boundary points are irrelevant). In
addition, if you have variable coefficients it is sufficient to consider only the problem
with frozen coefficients.

We can also answer point 1 almost immediately. There is a general theorem which
states that you can lose one order of accuracy at the boundary and still maintain the
overall accuracy of the scheme. Specifically the theorem states that if you have
a scheme of order (p, q) it is sufficient for the boundary treatment to be of order
(p − 1, q − 1) so that the overall accuracy is still of order (p, q). We will not prove
this as it is mostly technical in nature. As an example of this theorem, if you had
a second order scheme you would not want to use zeroth order extrapolation (i.e.,
extrapolating the boundary data from the interior)

vn+1
0 = vn+1

1 , (11.4)
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as (11.4) is only zeroth order accurate (the error is O(h) but remember in analyzing
truncation errors you always factor out one power of h). Rather you would use first
order extrapolation

vn+1
0 = 2vn+1

1 − vn+1
2 , (11.5)

which has a truncation error O(h) and so is first order accurate. (Note you can
keep track of the order of accuracy by seeing the degree of a polynomial for which
an extrapolation formula is exact. (11.4) is exact only for constants (zeroth order
accurate) while (11.5) is exact for linear functions (first order accurate). Remember
that there are also stability issues. We will see that (11.5) is fine for Lax Wendroff
but is unstable for leap frog. If you had a (2,4) scheme and you wanted to maintain
the overall accuracy you would have to use third order extrapolation.

We next discuss the issue of stability. This theory is associated with a Swedish
mathematician, Heinz Otto Kreiss (although others worked on it as well and the
foundations were set prior to his work). We will give an overview of the Kreiss
stability theory for initial boundary value problems. This theory is complicated and
technical in nature and we will only give an outline. Consider for simplicity leap frog

vn+1
j = vn−1

j + λ (vn
j+1 − vn

j−1). (11.6)

as an approximation to
ut = ux, x ≥ 0. (11.7)

Note that we are now looking only at the one boundary problem. We are using the
property that it is sufficient to treat stability for each boundary independently. Let’s
first restrict to λ ≤ 1 so that the basic scheme is von Neumann stable, i.e., we have
stability for the initial value problem without any boundaries.

We want to follow the PDE analysis as closely as possible. Remember that when
we analyzed just the partial differential equations we saw that in addition to the
Fourier type solutions (i.e., solutions to (11.7)) that looked like exp(ikx), when we
had a boundary value problem we also had to consider new types of solutions which
decayed at ∞. When we have the interval 0 ≤ x < ∞ as in (11.7) this means solutions
that look like

u(t, x) = exp(σt) exp(µx), µ < 0.

You should look at the analysis that we did in (10.5) but remember there we consid-
ered the interval −∞ < x ≤ 0 so that µ was positive.

In the PDE analysis we said that exp(µx) was a perfectly okay spatial dependence
for the solution and thus it was important that there be no such solutions with σ > 0,
otherwise the problem would not be well posed. On the finite difference level the
analogue is to set

vn
j = znκj, | κ |< 1. (11.8)

This is similar to the von Neumann analysis for the initial value problem except that
then κ was replaced by exp(ikh), i.e., a complex number of magnitude 1.
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Before we do any analysis you should see the analogue between the analytic so-
lution and the discrete solution (11.8). In both cases z plays the role of exp(σ∆t).
Solutions with z > 1 are unstable, they correspond to instabilities. Thus a stable
computation must rule out such solutions. The spatial dependence exp(ikh) for the
von Neumann analysis corresponds to Fourier analysis. Similarly for boundary value
problems κ corresponds to exp(µ) for µ < 0.

Certainly one condition for stability of a boundary treatment is that the total
scheme, with the boundary condition, admit no such solution. Just as for the PDE
σ and µ are not independent. There is a relation between them, which is determined
by the scheme (11.6). In order to determine this relationship plug (11.8) into (11.6).
We get

(z2 − 1)κ = λz(κ2 − 1). (11.9)

Now when we did the von-Neumann analysis for the initial value problem all we had
to do is show that for every κ on the unit circle there were no values of z with | z |> 1.
However, for the initial-boundary value problem the situation is harder. Bad solutions
with z > 1 and κ < 1 do exist. What we have to do is find these solutions and show
that they are ruled out by the boundary conditions. We first solve (11.9) for κ as a
function of z and then show how the boundary condition rules out such solutions.

First get a quadratic equation for κ in terms of z,

κ2 +
(1 − z2)

λz
κ − 1 = 0. (11.10)

Now you should interpret (11.10) as defining for each z with | z |> 1 two values of κ
which we refer to as κ1(z) and κ2(z). We can take

| κ1(z) |< 1, | κ2(z) |> 1. (11.11)

You can ask why this is so. First, as for any quadratic the product of the roots has
to be the last term in the quadratic, i.e., κ1(z)κ2(z) = −1. This says that either one
root is inside the unit circle and one root is outside as in (11.11) or both roots are
on the unit circle. Second, none of the κ’s can be on the unit circle. Thus we can
not have | κi |= 1 i = 1, 2. In order to see why, remember that the problem is von
Neumann stable. That means that means that if you set vn

j = zn exp(ikhj) and try
to satisfy the scheme, there are no solutions with | z |> 1. Now suppose we just called
exp(ikh) κ. Then κ is on the unit circle. From the von Neumann analysis, for any z
κ and z will satisfy the quadratic (11.9). Furthermore, you know from von Neumann
stability that | z | cannot be greater than 1 with | κ |= 1. Thus when | z |> 1 neither
of the two roots of (11.9) can be on the unit circle.

Now the solutions involving κ2(z) do not bother us because these solutions are
not well behaved in x. They do not decay, but grow exponentially as j(x) → ∞.
However, the solutions with κ1(z) are a big problem. They are well behaved in x (j)
but grow exponentially in time.
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Now you may think this is very bad. However, remember what happened on
the PDE level. If characteristics entered the region we had exponentially growing
solutions which were ruled out by the boundary conditions. Now we have no en-
tering characteristics, so there are no exponentially growing solutions for the PDE.
However, there are exponentially growing solutions for the difference scheme. The
finite difference method requires some boundary treatment. This is exactly what
the numerical solution znκj

1 is telling us. The specification of a numerical boundary
treatment should serve to rule out the exponentially growing solutions.

To be specific, let’s suppose that we have a general boundary condition of the
form

vn+1
0 =

q
∑

j=0

cjv
n+1
j +

q
∑

j=0

djv
n
j . (11.12)

(11.12) encompasses many numerical boundary treatments. For example, if we do
extrapolation at time level n + 1 we have

vn+1
0 = vn+1

1 , (11.13)

while if we do one sided differencing we have

vn+1
0 = vn

0 + λ(vn
1 − vn

0 ), (11.14)

as you can easily see. What we have to make certain is that when you try to plug in
the solution znκj

1 into any of the boundary treatments, no non-trivial solution results.
For example, if you plug into (11.13) you get κ = 1 ruling out the bad solutions (but
this is still unstable), while if you plug into (11.14) you get

z = 1 + λ(κ1(z) − 1),

which has to be analyzed to see whether it allows the exponentially growing solutions.
We can now state a necessary but not sufficient condition for stability of a numer-

ical boundary condition.

• Suppose a scheme is already von Neumann stable. If the boundary treatment
is stable then (11.9) and (11.12) have no solutions with | z |> 1 and | κ |< 1.
This is called the Ryabenkii-Godunov condition.

Now you should realize that the Ryabenkii-Godunov condition is hard to apply
in practice. Let’s compare it to von Neumann analysis. There in effect you plug
in znκj into the finite difference scheme alone, take | κ |= 1 and must show that
the only values of z that satisfy the equation satisfy | z |≤ 1. Now you must not
only do the von Neumann analysis but you must also solve (11.9) for κ1(z) and then
plug into the boundary condition and verify that for all z with | z |> 1 there is no
solution. Furthermore, we have considered a scheme where there is only a 3 point
stencil. If you consider something like the (2-4) leap frog where there is a 5 point
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stencil then it is easy to see that the analogue of the quadratic equation (11.10) is
a quartic equation and there are now two κ’s inside the unit circle. In this case the
boundary treatment must account for the possibility of linear combinations of these
two κ’s as solutions. The problem is that this is only a necessary condition it is still
possible that the scheme can be unstable.

There is a general theory of stability for initial boundary value problems that
gives necessary and sufficient conditions for stability. We will not give details, but
the upshot of the theory is that for a general boundary conditions an extension of
the Ryabenkii-Godunov condition is almost sufficient as well as being necessary for
stability of a given boundary treatment. The main problem with stability arises with
what are called generalized eigenvalues. These are solutions where | z |, | κ | → 1.
The analysis of whether a generalized eigenvalue can cause instability is very delicate
and can be very involved.

What you can do in practice is just run a simple program with the given boundary
treatment and see if it blows up or not. This can show up solutions which are not gen-
eralized eigenvalues, however instabilities due to generalized eigenvalues can be very
slowly growing and be hard to detect in practice. Generally boundary instabilities
are very pernicious for non-dissipative schemes such as leap frog. Dissipative schemes
such as MacCormack are much more robust in the variety of boundary conditions
that they can handle.

12 Numerical Boundary Treatments

General Considerations
We now consider some numerical treatments that are employed in practice. There
are two main problems that we will consider

1. Developing numerical boundary treatments

2. Dealing with systems where there are positive and negative eigenvalues (incom-
ing and outgoing characteristic variables).

First consider the problem,

ut = ux 0 ≤ x ≤ ∞, u(0, x) = f(x). (12.1)

By what we have done previously no boundary condition should be imposed because
the characteristics exit at the boundary x = 0. However, if you do central differencing
some boundary treatment has to be employed. Such a boundary is called an outflow
boundary.

In some ways the best treatment for (12.1) is upwinding, i.e., use a scheme which
does upwind differencing for all points, e.g.,

vn+1
j = vn

j + λ(vn
j+1 − vn

j ). (12.2)
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It’s easy to see that (12.2) requires no boundary condition at x = 0 (j = 0) and in
fact preserves the correct direction of information flow. In addition although (12.2) is
only a (1,1) scheme you can easily see that it is exact for (12.1) provided λ = 1. (12.2)
is the most basic upwind scheme and is called the Courant-Isaacson-Rees scheme.

Although (12.2) has advantages for general problems it is not often used as an
interior scheme except around shocks. There are several reasons for this. For non-
linear problems and problems with variable coefficients you cannot easily identify
the characteristic variables. For problems with two characteristic speeds you will
have to have the effective λ < 1 for at least one of the waves and you will then get
only first order accuracy. For smooth functions it is more accurate to use high order
central difference approximations. Finally it is not clear how to extend this to two
dimensions.

We next discuss general numerical boundary treatments. In general, there are two
major classes of numerical boundary treatments. Methods based on one-sided differ-
ences (i.e., (12.2)) and methods based on extrapolation. We consider extrapolation
methods first since a better understanding of one-sided differences can be had if you
first understand the notion of extrapolation.

Extrapolation
One major class of numerical boundary conditions is based on extrapolation at

time level n + 1. Extrapolation is a way of determining the solution at a given point,
using only data on one side of that point. For example, for zeroth order approximation
we have

vn+1
0 = vn+1

1 . (12.3)

Another way of looking at (12.3 is that we approximate the solution as a constant
function near the boundary. It is easy to see that (12.3) has an O(h) error. Remember
that you have to divide out a factor of h in defining the truncation error. Thus (12.3)
is only zeroth order accurate and so can spoil the accuracy of second order schemes.
First order extrapolation

vn+1
0 = 2vn+1

1 − vn+1
2 , (12.4)

approximates the solution by a linear function near the boundary. From Taylor series
you can see that the error is O(h2) so that (12.4) preserves the accuracy of second
order schemes. In general you can symbolically define rth order extrapolation by the
formula

(E − I)r+1vn+1
0 = 0 (12.5)

where E is the shift operator,
Evn+1

j = vn+1
j+1 .

Another way to define extrapolation is as an approximation to the vanishing of certain
derivatives. If we define the forward difference operator

D+vn+1
j =

vn+1
j+1 − vn+1

j

h
,
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then rth order extrapolation can also be written as

hr+1Dr+1
+ vn+1

0 = 0, (12.6)

so that zeroth order extrapolation is an approximation to the vanishing of the first
derivative, second order approximation is an approximation to the vanishing of the
second derivative etc. Even though you can treat extrapolation as an approximation
to the vanishing of some high order derivatives, you should treat it as a numeri-
cal procedure, rather than an approximation to an analytically imposed boundary
condition.

It can be shown that extrapolation of any order is stable when coupled to any dis-
sipative interior scheme (e.g., Lax Wendroff, MacCormack). First order extrapolation
preserves the second order accuracy of second order schemes. However, you should
realize that this is accuracy in the L2 norm and there will be some degradation in
accuracy near the boundaries.

One-Sided Differences
(12.2) can be used as a boundary condition. It can be shown that this is stable

for any dissipative interior scheme. One nice way to implement one-sided differences
is via a procedure called extrapolation of the fluxes. Suppose you are solving (12.1)
and at time level n you define a point outside the domain, i.e.,

vn
−1 = 2vn

0 − vn
1 . (12.7)

We can interpret (12.7) as approximating a fictitious value outside the domain (grid
point j = −1) by first order extrapolation at time level n from the interior. Suppose
you were to implement Lax Wendroff for (12.1) at j = 0 using (12.7) to get the needed
value at j = −1. After some very simple algebra you can see that you will get exactly
(12.2). Thus one-sided differences is equivalent to extrapolation at level n.

This formulation is very useful in dealing with conservation laws. Suppose that
you were solving the nonlinear conservation law,

ut = fx (12.8)

where f(u) is a given nonlinear flux function. The use of Lax Wendroff, or its relative
MacCormack requires you to compute the fluxes fj and take differences of these fluxes.
You can handle the boundary simply by doing first order extrapolation of the fluxes,

fn
−1 = 2fn

0 − fn
1 , (12.9)

and then use the interior scheme.
The use of (12.7) or (12.9) is stable for dissipative schemes, it is probably the best

boundary treatment to use with MacCormack and greatly simplifies the program-
ming. You should bear in mind though that it is equivalent to one-sided differencing.
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We next discuss MacCormack and the treatment of intermediate values in more detail.

Intermediate Values
We next look at the problem of what to do if you have intermediate values. We

consider this in the context of MacCormack. There are several cases that need to be
dealt with. First consider the FB variant of MacCormack,

v̂j = vn
j + λ(f(vn

j+1) − f(vn
j )), (12.10)

followed by

vn+1
j =

1

2
(v̂j + vn

j + λ(f(v̂j) − f(v̂j−1))). (12.11)

Note that we are working with a general flux function f(u). Now at the predictor stage
no numerical treatment has to be done at j = 0. However, some boundary condition
must be imposed at the corrector stage. A very good procedure is to extrapolate the
predicted fluxes as in (12.9).

f(v̂−1) = 2f(v̂0) − f(v̂1). (12.12)

Note that in (12.12) we do not obtain a value for v̂−1. The extrapolation is used only
to obtain an approximation for the flux function at the fictitious point. Typically you
do the predictor step in a do loop, then the flux extrapolation (12.12) and then the
corrector step (12.11) in another do loop.

A different treatment is required for the BF variant

v̂j = vn
j + λ(f(vn

j ) − f(vn
j−1)), (12.13)

followed by

vn+1
j =

1

2
(v̂j + vn

j + λ(f(v̂j+1) − f(v̂j))). (12.14)

In this case you need some boundary treatment before completing the predictor stage,
but you need no boundary treatment at the corrector case. A good approach is to
extrapolate the fluxes at the predictor stage, i.e.,

f(vn
−1) = 2f(vn

0 ) − f(vn
1 ) (12.15)

and then use the interior scheme. In this case you do the extrapolation before doing
the do loop for the predictor. Note again that you never get vn

−1, but rather only the
flux function at the fictitious point j = −1.

An important case arises when you have to impose a boundary condition for the
PDE. For example, suppose you had the problem

ut = −ux, 0 ≤ x ≤ 1 u(t, 0) = g(t), (12.16)
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and consider just the boundary treatment at x = 0. Suppose you did the FB variant,
a forward predictor and a backwards corrector. In this case you do not have to apply
(12.11) at j = 0. You have boundary data that you can impose.

However, in order to apply (12.11) at j = 1 you need a predicted value at j = 0,
i.e., v̂0. You can get this value by applying the predictor (12.10) at j = 0. You can
also get this value from the given data, i.e., v̂0 = g(tn+1). In this case you can use
either approach. Both are stable. In most instances it is best to use the boundary
data whenever possible so you would probably get slightly better results by applying
the boundary data in the predictor. However, this is not always convenient, and
another approach is to use the scheme and extrapolation of the fluxes whenever you
have to and apply the given boundary data only at the end of each timestep.

Note that if you did the BF variant it would not matter what you did at j = 0 in
the predictor stage as the predicted value at j = 0 is only used for the corrector at
j = 0 and this is overwritten by the given boundary data.

Note that for Runge-Kutta with second order spatial differencing the situation
is similar, however there are not so many different cases to consider. Generally you
can extrapolate the fluxes at each stage. If you are given boundary data you have a
choice of whether to extrapolate or impose the given data at the intermediate stages.
Imposition of the given data can give slightly better results, but it is often more
convenient to only impose the given data after the timestep is completed.

For (2-4) schemes the boundary treatment is more complicated. In this case you
need some special treatment at both j = 0 and j = 1 and even if you have a boundary
condition from the PDE at j = 0 you still need some special treatment at j = 1. Also
your boundary treatment should be third order in space. The treatment for the (2-4)
leap frog is complicated and we will not discuss it further. We will discuss the (2-4)
MacCormack.

(2-4) MacCormack
Consider the equation

ut = fx

and the FB variant

v̂j = vn
j +

λ

6
(−fn

j+2 + 8fn
j+1 − 7fn

j ), (12.17)

followed by

vn+1
j =

1

2
(v̂j + vn

j +
λ

6
(7f(v̂j) − 8f(v̂j−1) + f(v̂j−2))). (12.18)

Suppose that f ′(vn
0 ) > 0 so that no boundary condition needs to be prescribed at

x = 0. You can see from (12.17) and (12.18) that you need a numerical boundary
treatment at both j = 0 and j = 1. The best approach that I know of is to do a third
order extrapolation of the fluxes. This at j = 0 you use the predictor as is (your do
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loop starts at j = 0, but you extrapolate the fluxes at the corrector level

f(v̂−1) = 4f(v̂0) − 6f(v̂1) + 4f(v̂2) − f(v̂3) (12.19)

f(v̂−2) = 4f(v̂n
−1) − 6f(v̂0) + 4f(v̂1) − f(v̂2).

Note that the order that you do the extrapolation matters. You must first extrapolate
to j = −1 and then to j = −2.

If you do the BF variant, so you do a backwards predictor then you extrapolate
at level n before beginning the predictor.

This procedure works well even if you have an inflow boundary, i.e., if you have
prescribed boundary data. I get good results if I use the extrapolation of the fluxes
whenever I have to and then just impose the boundary data at the end of the timestep,
when I am ready to advance the complete solution to level n + 1. Said another way,
I never use the given boundary data at the predicted step.

Finally, note that a similar technique works for Runge-Kutta.

Some Boundary Treatments for Leap Frog
Now consider leap frog,

vn+1
j = vn−1

j + λ(vn
j+1 − vn

j−1). (12.20)

It can be shown that extrapolation at a fixed time level of any order is unstable
when combined with (12.20). This is a very delicate instability connected with values
of κ approaching the unit circle from the outside. It can be shown that one-sided
differences is stable for leap frog.

Other stable approximations involve staggering the space-time levels. One such
boundary condition is

vn+1
0 = vn

0 + λ(vn
1 − 1

2
(vn+1

0 + vn−1
0 )). (12.21)

(12.21) is sometimes more accurate than (12.2). The fact that you have to average
in time should be no surprise to you as you have to do something similar when you
have dissipation with leap frog and upwind differencing can be dissipative.

Systems
The last topic we will consider on boundary conditions is to deal with systems,

for example,
~ut = A~ux, 0 ≤ x < ∞,

where ~u is an m−vector and A is an m × m matrix. There are 3 cases to consider.
Two are easy.

1. All characteristic curves enter at x = 0. In this case all of the eigenvalues of
A are negative we need m boundary conditions. If you have extended stencils
then you have to do something like one-sided differencing or extrapolation for
points adjacent to the boundary.
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2. All characteristics leave. In this case all eigenvalues of A are positive and you
have to do some numerical boundary treatment for all variables.

3. Some characteristics enter and some characteristics leave. This is the hard case.
Sometimes this is called an inflow/outflow boundary.

We consider an inflow/outflow boundary. All of the boundary conditions that we
have discussed previously are only for the scalar equation. Now in our discussion of
the initial value problem (without boundaries) we said that a system could be treated
by being diagonalized and working only with the characteristic variables. Generally
this does not work for initial boundary value problems because the unknowns are all
coupled together by the boundary conditions.

We describe the problems of inflow/outflow boundaries by considering the 2-way
wave equation,

(

u
v

)

t

=
(

0 1
1 0

) (

u
v

)

x

, 0 ≤ x < ∞, (12.22)

with appropriate initial conditions. Now you should know by now that the eigenvalues
of the matrix in (12.22) are ±1. Thus we need one boundary condition for the one
negative eigenvalue (incoming characteristic variable). The incoming characteristic
variable is u − v.

If everything was ideal you would be given prescribed data for u − v. However,
generally you will not be given exactly the characteristic variable. A typical boundary
condition will be to give one of the dependent variables, say

v(t, 0) = g(t). (12.23)

Now we can write (12.23) in the form

u(t, 0) − v(t, 0) = u(t, 0) + v(t, 0) − 2g(t), (12.24)

and this fits the general form we need for a well posed problem (the incoming charac-
teristic variable is expressed as a combination of the outgoing characteristic variable
plus given data - see (10.15)).

Now consider a numerical boundary treatment. In order to emphasize the theory
we will first show how not to do it. Suppose you are using leap frog. You could
say that at the boundary you know vn+1

0 = g(tn+1) and since one-sided differencing
is stable for leap frog (for the scalar equation) you could consider doing a one-sided
differencing for u,

un+1
0 = un

0 + λ(vn
1 − vn

0 ). (12.25)

This gives you an explicit procedure to update u and v at the boundary. However,
this will probably not work. It will probably be unstable. Remember, this is how not
to do it.
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You can ask why this probably will not work. We have

u =
u + v

2
+

u − v

2
.

Thus doing one-sided differencing for u is the same as doing one-sided differencing for
a combination of the outgoing characteristic variable u+ v (which is stable and okay)
and the incoming characteristic variable u − v (which is unstable and goes against
the flow of information). This will often make the whole procedure unstable.

Now we address the question of how you should do it. Suppose you wrote the
equation for the outgoing variable

(u + v)t = (u + v)x, (12.26)

and then did one-sided differencing for (12.26)

(u + v)n+1
0 = (u + v)n

0 + λ((u + v)n
1 − (u + v)n

0 ). (12.27)

(12.27) is now stable and gives a predicted value (or you can think of this as a tentative
value) for u + v at level n + 1. Let’s write this predicted value as (û + v̂)n+1

0 . We
are using this notation because this does not give the final values of u and v at the
boundary - we also have to use the given boundary data. We do this by solving the
system of linear equations

vn+1
0 = g(tn+1)

un+1
0 + vn+1

0 = (û + v̂)n+1
0 , (12.28)

which can easily be solved for un+1
0 ,

un+1
0 = (û + v̂)n+1

0 − g(tn+1). (12.29)

This procedure is called the characteristic boundary treatment and will be stable if
the treatment of the scalar equation is stable.

Let us summarize how you would implement this treatment in practice. Suppose
you use your numerical treatment to get tentative values for all variables. You can
then form predicted values for the outgoing characteristic variables. You then write
down a system of m equations using the given boundary data and the predicted values
of the outgoing characteristic variables which you then solve at each timestep. If you
have a nonlinear system then to get the characteristic variables you linearize around
the previous timestep or sometimes around a given ambient state. This approach
should always be used with inflow/outflow boundaries.

For the MacCormack or Lax-Wendroff schemes you typically do one-sided differen-
tiation by extrapolating the fluxes as described above. Note, for the 2-4 MacCormack
you have to extrapolate to two fictitious points. What is typically done is to update
all variables using the extrapolated fluxes. Then at level n+1 you use these tentative
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values to compute the outgoing characteristic variables. You then update all variables
by solving a system of linear equations which says that the outgoing characteristic
variables are equal to the tentative characteristic variables while the remaining equa-
tions are obtained from the boundary data. Assuming no zero eigenvalues the number
of equations will be exactly the same as the number of variables. For nonlinear prob-
lems you do the same thing, but you have to approximate the characteristic variables
using the Jacobian matrix.

13 Two-Dimensional Problems

Consider the 2D vector system

~ut = A~ux + B~uy, (13.1)

where ~u is an m−vector and A and B are m × m matrices. Equation (13.1) is
hyperbolic if for all real α and β not both 0 there exists a matrix P (which can
depend on α and β) such that

P−1(αA + βB)P = D, (13.2)

where D is a real diagonal matrix. Note that as a particular case the one-dimensional
subproblems

~ut = A~ux, ~ut = B~uy,

are hyperbolic. (13.2) says that if you look for solutions to (13.1) of the form

~u(t, x, y) = exp(iωt) exp(iαx) exp(iβy)~u0,

i.e., if you Fourier transform in both spatial directions, then ~u0 must be an eigenvector
of αA + βB and ω, the corresponding eigenvalue, is real.

A special case occurs when A and B are symmetric. In this case the matrix
αA + βB is symmetric and (13.2) always holds. Such a system is called a symmetric
hyperbolic system.

While symmetric hyperbolic systems are common, there is one very major com-
plication in going from 1D to 2D. Generally A and B cannot be simultaneously
diagonalized. In particular for matrices with a complete set of eigenvectors if A and
B are simultaneously diagonalizable then they must commute, which is generally not
the case. In order to see what this implies, note that for the 1D system

~ut = A~ux, (13.3)

you can transform the equation to diagonal form and for most purposes (e.g., von
Neumann analysis but not boundary conditions) you only have to consider the scalar

87



problem. Unfortunately for 2D problems you generally cannot do this. You can make
A diagonal by a similarity transformation, but then the transformed B will not be
diagonal. Thus in general you cannot just study the scalar problem in 2D and then
jump to study systems.

Note that we found a similar problem when we studied initial boundary value
problems in 1D. Such problems cannot generally be decoupled because all variables
are coupled by the boundary condition. If you remember how much more difficult the
theory was for initial boundary value problems than for just initial value problems
you can understand that this is a big complication.

Example, 2D Leap Frog
As you saw above, the problem of going from a scalar equation to a system is

complicated in 2D. Even for scalar equations there are some important differences
between finite difference schemes in 1D and in 2D. As an example consider the scalar
equation

ut = ux + uy, (13.4)

and the leap frog scheme

vn+1
j,k = vn−1

j,k +
∆t

∆x
(vn

j+1,k − vn
j−1,k) +

∆t

∆y
(vn

j,k+1 − vn
j,k−1), (13.5)

where we use the index j to index the x−points and the index k to index the y−points.
Note that there is no reason that ∆x should equal ∆y. However, for simplicity

we will take ∆x = ∆y = h. To do a von Neumann analysis in 2D, plug a solution of
the form

vn
j,k = zn exp(iαhj) exp(iβhk) (13.6)

into (13.5) to get an equation for z. After some simple algebra you can see that z
satisfies

z2 − 1 = 2iλz(sin(αh) + sin(βh)). (13.7)

Note that α and β are independent. For simplicity of notation set

θ = αh, φ = βh,

where
| θ |, | φ |≤ π.

(13.7) can now be rewritten as

z2 − 1 = 2iλz(sin(θ) + sin(φ)).

Now we see that the von Neumann analysis is more complicated in 2D because we
have to consider two Fourier variables (θ and φ).
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We can solve for z,

z = iλ(sin(θ) + sin(φ)) ±
√

1 − λ2(sin(θ) + sin(φ))2, (13.8)

and we will have | z |≤ 1 provided

λ2(sin(θ) + sin(φ))2 ≤ 1. (13.9)

(In this case | z |= 1). In the 1D case this requires λ ≤ 1, but in the 2D case the
maximum of sin(θ) + sin(φ) is 2. Thus the stability bound for the leap frog in 2
dimensions is

λ ≤ 1

2
. (13.10)

This indicates an important point. The effect of running leap frog in 2D is to
reduce the maximum allowed timestep. This is bad for both efficiency (you have to
run at smaller timesteps) and accuracy (leap frog works best for λ near 1).

This behavior is general. Most 2D schemes for the scalar case have a reduced
timestep over the 1D version. The way around this is to use operator splitting which
we will discuss soon. Note that there will be an additional reduction in going from
2D to 3D.

What can you say about a system? Consider the 1D case,

~ut = Aux.

By what we did before we found that the stability bound was controlled by the largest
eigenvalue of A, λ ≤ h/µmax. Furthermore the system could be decoupled to look
like m scalar equations.

In 2D the situation is more complicated. As before take ∆x = ∆y = h. If we
write leap frog for the system (13.1) and plug in the vector

~vn
j,k = zn exp(iαhj) exp(iβhk)~v0,

we get the system of equations,

((z2 − 1)I − 2iλz(A sin(θ) + B sin(φ)))~v0 = 0. (13.11)

If we call the matrix on the left in (13.11) G(z, θ, φ, A, B) then the stability condition
is that for every θ, φ there exist no values z with | z |> 1 such that

det G(z, θ, φ, A.B) = 0. (13.12)

(13.12) is much harder to verify than for the scalar case. In particular, you cannot
reduce it to a bunch of scalar equations unless A and B are simultaneously diagonal-
izable, i.e., they commute, which is generally not the case. What happens in practice
is that the stability bound depends not only on some measure of the size of A and B
but on how far they are from commuting.
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Let’s examine (13.11) and (13.12) in more detail. For every value of θ and φ, the
matrix A sin(θ)+B sin(φ) is similar to a real, diagonal matrix. This is the definition of
hyperbolicty. Clearly you will get a null vector of G if and only if ~v0 is an eigenvector
of A sin(θ)+B sin(φ). For every value of θ and φ let µm(θ, φ) be the largest eigenvalue
(in magnitude) of A sin(θ) + B sin(φ). Now what you can say is that for every θ and
φ the problem of determining z reduces to the scalar case and we have the stability
bound

λ | µm(θ, φ) |≤ 1. (13.13)

Now if A = B, so that A and B are certainly simultaneously diagonalizable, (13.13)
reduces to

λ | µmax |≤ 1

2
,

where µmax is the largest eigenvalue (in magnitude) of A.
If A and B are symmetric and commute, so that they have a common set of

eigenvectors, then we get

λ max
l

(| µA
l sin(θ) + µB

l sin(φ)) |≤ 1

where µA
l and µB

l stand for the eigenvalues of A and B respectively associated with
the lth eigenvector (l = 1, · · · , m). The stability bound is now

λ max
l

(| µA
l | + | µB

l ) |≤ 1. (13.14)

For the commuting cases at least you only have m cases to consider. If A and B do
not commute you cannot even say this. Clearly from matrix norms you have

| µm(θ, φ) |≤‖ A ‖ + ‖ B ‖,

for any matrix norm. You will then have stability provided

λ(‖ A ‖ + ‖ B ‖) ≤ 1, (13.15)

however (13.15) is generally a severe underestimate. Remember that there can be
many matrix norms so you would at least like to use the smallest matrix norm. For
symmetric matrices you get the best bound by using the ‖ ‖2 norm, which you should
know from linear algebra is just the largest eigenvalue (in magnitude) of the matrix.
If we denote this by ρ(A) and similarly for B we have

λ(ρ(A) + ρ(B)) ≤ 1.

This is not a sharp bound (i.e., you can get stability for higher values of λ). In general
this bound is worse than (13.14) which is valid when the matrices commute. Note,
ρ(A) is called the spectral radius of A.
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To summarize, even for the simple leap frog scheme, stability for 2D schemes is
very tricky. It depends on more than the eigenvalues when the matrices can not be
simultaneously diagonalized (i.e., they do not commute). The situation for 2D Lax
Wendroff, MacCormack and Runge Kutta is similar. We will not go further into sta-
bility for 2D schemes. In general the bound (13.15) is the best you can do without
taking into account specific properties of the matrices A and B. We will discuss a
way around these problems called operator splitting.

Operator Splitting
It is possible to reduce the 2D problem to a sequence of 1D problems and then

apply just 1D schemes. This technique is called operator splitting and is useful in
other contexts as well. In order to motivate this we consider the forward Euler scheme
(which is unstable) for the scalar equation

ut = ux + uy. (13.16)

The scheme is

vn+1

j,k = vn
j,k +

λ

2
(vn

j+1,k − vn
j−1,k) +

λ

2
(vn

j,k+1 − vn
j,k−1), (13.17)

where we have assumed that ∆x = ∆y = h. Remember that this scheme is unstable.
It is being used only for teaching purposes.

Now we look for solutions of (13.17). Since we are not doing a von Neumann
analysis we will not use z but rather we set

vn
j,k = an exp(iθj) exp(iφk),

and plug into (13.17). We get

an+1 = an(1 + iλ sin(θ) + i
λ

2
sin(φ)). (13.18)

Now for any scheme the only waves that you are approximating accurately are those
with θ and φ small. From basic calculus if ε is small we have

1 + ε ' exp(ε). (13.19)

Thus for θ and φ small we have

1 + iλ(sin(θ) + sin(φ)) ' exp(iλ(sin(θ) + sin(φ))

and
exp(iλ(sin(θ) + sin(φ)) = exp(iλ sin(θ)) exp(iλ sin(φ)), (13.20)

Since θ and φ are small, (13.19) and (13.20) imply

1 + iλ(sin(θ) + sin(φ)) ' (1 + iλ sin(θ))(1 + iλ sin(φ)). (13.21)
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Now 1 + iλ sin(θ) is exactly what you would get if you applied forward Euler to
the 1D equation

ut = ux,

and similarly for 1 + iλ sin(φ). Thus the right hand side of (13.21) is exactly what
you would get from applying the split scheme of

ṽj,k = vn
j,k +

λ

2
(vn

j+1,k − vn
j−1,k), (13.22)

followed by

vn+1

j,k = ṽj,k +
λ

2
(ṽj,k+1 − ṽj,k−1). (13.23)

Note that (13.22) corresponds to solving the 1D equation

ut = ux

for one timestep (since the solution then does not correspond to any physical time
we denote them by ·̃) and then, using these intermediate values as initial conditions,
solving the equation

ut = uy

for one timestep to get the solution at level n + 1. We have split the 2D scheme into
a product of 1D schemes.

Of course the split scheme is a product of two unstable schemes and is no better
than the original unstable scheme. However, the idea can be applied to stable schemes
(e.g., MacCormack) as well.

Operator Formulation
Before we apply operator splitting in a more specific way, we consider a general

formulation in the context of ordinary differential equations.
First consider the scalar equation

dy

dt
= (a + b)y, (13.24)

where y, a and b are scalars, with a and b given constants. It should be clear to you
from very elementary differential equations that the solution to (13.24) at time level
tn+1 can be obtained from y(tn) by the formula

y(tn+1) = exp((a + b)∆t)y(tn),

where ∆t is the timestep.
Using the properties of exponentials we can write

exp((a + b)∆t) = exp(a∆t) exp(b∆t),
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so that
y(tn+1) = exp(a∆t)(exp(b∆t)y(tn)). (13.25)

Now you may notice that I have inserted some extra parenthesis in (13.25). This is
to emphasize that this equation can be interpreted as first solving the scalar equation

dy

dt
= by, (13.26)

for one timestep and then using this as initial condition (i.e., the solution at time
level n) to advance the equation

dy

dt
= ay, (13.27)

one timestep. You should be aware that the update for (13.26) has no meaning in
the context of the original problem (13.24). It is simply a numerical device allowing
you to replace one equation by two others in the solution process.

This is splitting in its most elementary form. Equations (13.26) and (13.27) are
the split equations. Of course, nobody would do this since it is just as easy to solve
(13.24) as it is to solve (13.26) and (13.27), however, we will ultimately interpret a
and b as differential operators in the x and y directions, respectively. In this case
there is a big savings in going from the unsplit to the split equations.

Before we consider differential operators, we next consider the vector system of
equations

d~y

dt
= (A + B)~y,

where ~y is a vector (the size doesn’t matter) and A and B are matrices. The solution
is

~y(t) = exp((A + B)t)~y(0),

where the exponential of a matrix is defined by its Taylor series. Now look at what
happens if you advance the solution one timestep. The solution will be

exp((A + B)∆t) ~y(0).

Now for a scalar you know the exponential of a sum is the product of the expo-
nentials, i.e.,

exp((a + b)∆t) = exp(a∆t) exp(b∆t).

You can ask if this is true for matrices as well. The answer is in general no. In fact,
from the Taylor series we have

exp((A + B)∆t) = I + (A + B)∆t +
(A + B)2∆t2

2!
+ . . . ,

and in general,
exp((A + B)∆t) 6= exp(A∆t) exp(B∆t).
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unless A and B commute.
Now suppose you want to do approximations. From the Taylor series you can see

that

exp((A + B)∆t) = exp(A∆t) exp(B∆t) +
∆t2

2!
(AB − BA) + O(∆t3). (13.28)

This follows from manipulation of the Taylor series. We will not go through it because
it is straightforward but tedious. (13.28) says that if you are only interested in first
order accuracy in time then you have

exp((A + B)∆t) = exp(A∆t) exp(B∆t) + O(∆t2).

Note that while this is only first order accurate in general, it is exact if A and B
commute.

Since we generally want at least second order accuracy in time the natural question
is whether you can do better. In fact you can. You can verify that

exp((A + B)2∆t) = exp(A∆t) exp(B2∆t) exp(A∆t) + O(∆t3). (13.29)

Using (13.29) (without the O(∆t3)) term leads to what is called second order splitting.
You can ask what is the point of this. (13.28) and (13.29) are defined for matrices.

From linear algebra you should know that you can also consider a matrix an operator.
Consider now the equation

~ut = A~ux + B~uy. (13.30)

We can write (13.30) as an operator equation

~ut = Lx~u + Ly~u, (13.31)

where Lx is the operator A∂/∂x. and Ly is the operator B∂/∂y. Now by analogy
with the ODE case the general solution to (13.31) can be expressed as the exponential

exp((Lx + Ly)t).

(Everything has to be defined very carefully because unlike matrices Lx and Ly are
unbounded operators. However, just proceed formally.) We then have the first order
splitting to advance one timestep

exp((Lx + Ly)∆t) ~u(t) ' exp(Lx∆t) exp(Ly∆t) ~u(t), (13.32)

and the second order splitting

exp((Lx + Ly)2∆t) ~u(t) ' exp(Lx∆t) exp(Ly2∆t) exp(Lx∆t) ~u(t). (13.33)

Now exp(Lx∆t) is just the solution operator to the 1D equation

~ut = A~ux, (13.34)
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while exp(Ly∆t) is just the solution operator to the 1D equation

~ut = B~uy. (13.35)

Now you should know many ways to solve these 1D equations. Think of MacCor-
mack. Let Sx and Sy stand for solution operators for updating (13.34) and (13.35)
respectively one timestep. Then we can approximate the 2D equation (13.30) by

vn+1

j,k = SxSyv
n
j,k, (13.36)

which corresponds to the first order splitting and by

vn+2
j,k = SxSySySxv

n
j,k, (13.37)

which corresponds to the second order splitting.
You might want to think of Sx and Sy as calling a MacCormack subroutine for one

timestep. When you do a formal von Neumann analysis (it is very simple because
all you are doing are 1D schemes) you can find that stability is governed only by
the stability bound for the 1D equations. Note that schemes used with splitting
must be only 1 step schemes. Schemes like leap frog can not be split because in the
intermediate step of the splitting the solution makes no sense, it is not a solution of
the given problem, while leap frog requires data at level n − 1 as well as at level n.

Note that splitting is not only stable but it is easy to code since you only have to
write subroutines for 1D equations. Generally during the splitting you do extrapola-
tion of the fluxes at each boundary and only update the boundary conditions after
each timestep has been completed. This formulation is equally valid for the 2-4 Mac-
Cormack and can also be applied to Runge-Kutta. Finally, you can use splitting for
problems where the timestep for one of the 1D problems say the y−problem is smaller
than for the x−problem. Suppose for example that the y−problem required half the
timestep of the x−problem. For a first order splitting you can do

vn+1

j,k = Sx(∆t)Sy(
∆t

2
)Sy(

∆t

2
)vn

j,k.

Note that despite the formal order of accuracy, there is a splitting error so you
should be careful when you do splitting. However, in many problems the improve-
ments in efficiencies due to splitting more than overcome additional truncation errors.

You should know that operator splitting need not be applied just to split off x
and y derivatives. It can be applied to split off different terms in an equation. For
example, suppose you had a diffusion reaction equation,

ut = uxx + R(u). (13.38)

Equations of the form (13.38) can be dealt with by semi-implicit schemes as we have
already learned. Another approach is to split off the nonlinear term. Thus instead
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of advancing (13.38) one whole timestep you can advance the ordinary differential
equation

du

dt
= R(u), (13.39)

one time step followed by a solution to the linear partial differential equation

ut = uxx. (13.40)

This approach can be thought of as another form of a semi-implicit scheme. It
avoids doing a fully nonlinear implicit scheme. Another application would be if the
time scales associated with the reaction term were much smaller than the timescales
associated with the diffusion terms. Suppose for example that the ODE (13.39)
required timesteps 10 times smaller than the PDE (13.40). Then you could solve
(13.39) 10 times with the smaller timestep and then use splitting to solve (13.40).

Splitting methods such as these are used in chemistry and nonlinear optics. The
main thing to be aware of is that there may be splitting errors which, for practical
timesteps, could dominate the overall error.

Approximate Factorization
When operator splitting is applied to an implicit scheme it is called approximate

factorization. To see how this works consider first the 1D equation

ut = ux,

(having uxx on the right hand side would not change anything). Suppose we use
backward Euler (Crank-Nicolson would be similar) together with the δ-formulation.
We would get the linear, tridiagonal system of equations

δj −
λ

2
δj+1 +

λ

2
δj−1 = ∆t

(un
j+1 − un

j−1)

2h
. (13.41)

In practice the linear system (13.41) is supplemented by boundary conditions
(both imposed and numerical) at say j = 0 and j = N . Generally the boundary
conditions preserve the tridiagonal structure of (13.41). Tridiagonal systems of equa-
tions can be easily solved and the computational cost of the implicit scheme is not
much more than that of an explicit scheme. A similar statement is true for systems
of equations,

~ut = A~ux,

where ~u is an m-vector and A is an m × m matrix. In this case you get a block
tridiagonal matrix with blocks of size m × m. The system can be solved efficiently,
however the cost of inverting the blocks scales as m3 so the cost of the implicit scheme
increases significantly as m increases.

96



The situation in 2D is worse. Consider the 2D equation

ut = ux + uy,

and the natural extension of backward Euler to 2D. Using the δ-formulation and
assuming ∆x = ∆y = h we have

δj,k −
λ

2
(δj+1,k + δj−1,k − δj,k−1 + δj,k+1) = ∆t(

(un
j+1,k − un

j−1,k)

2h
+

(un
j,k+1 − un

j,k−1)

2h
).

(13.42)
Now (13.42) is a linear system, but it is no longer tridiagonal. If there are N

points in each direction the associated matrix has bandwidth N . In order to see this,
note that if you were to assemble the system (13.42) as a matrix, you would have to
order points by a single index. Suppose you ordered as in Fortran by letting the first
index increase first. Thus the two dimensional array would be ordered

(1, 1), (2, 1), (3, 1), . . . , (N, 1), (1, 1), (1, 2), (1, 3), . . . .

In this case the associated matrix would have elements on the main diagonal (corre-
sponding to the elements (j, k) in the equation), elements on the first sub and super
diagonal (corresponding to the elements (j − 1, k) and (j + 1, k)) and nonzeros on
the N th diagonals (corresponding to the elements (j, k + 1) and (j, k − 1)). Now
these kinds of systems (called banded systems) are much more difficult to solve than
tridiagonal systems. Not only must you do more computational work, but you must
allocate storage for the intermediate diagonals. As a result, direct application of the
2D scheme based on solving (13.42) could be prohibitively expensive. The situation
is worse in 3D.

One possible solution is to use an iterative solution method for the linear system
(13.42). For example, you may have heard of Conjugate Gradient methods, the
Gauss-Seidel method, or the SOR method. However, these methods could require a
lot of iterations to converge. Another approach is to split the x terms and the y terms
in the matrix, a process called approximate factorization. To see how this works, let’s
simplify the writing by introducing the notation Dx and Dy to denote the central
difference approximations in x and y respectively. (13.42) can then be rewritten as

(I − ∆tDx − ∆tDy)~δ = rhs, (13.43)

where at this point we do not care exactly what the right hand side of (13.43) is. We
then follow the formalism of splitting by introducing the first order approximation

(I − ∆tDx − ∆tDy) ' (I − ∆tDx)(I − ∆tDy). (13.44)

The approximate factorization (13.44) reduces the 2D problem (13.42) to the product
of two one dimensional operators which can be represented by tridiagonal matrices. Of
course you will have to reorder the points when you switch from the solution of the x
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system to the solution of the y system. However, this is just an issue of programming.
You may have heard of the Alternating Direction Implicit (ADI) method. We will
not give the details, but this is very similar to approximate factorization as we have
described here.

The approximately factored system is explicitly

(I − ∆tDx)(I − ∆tDy)~δ = ∆t(Dx + Dy)~u
n. (13.45)

Note that when you have steady state conditions, i.e., when ~δ = 0, you still solve
the finite difference approximation to the steady state equations (right hand side of
(13.45)=0). However, the splitting adds a splitting error to the original discretization
error. The splitting error grows as ∆t2 which is bad since you want to use large
timesteps with your implicit scheme. Thus you are forced to reduce your timestep if
you are interested in the transient solution, however the equations are much easier
and cheaper to solve at each timestep.

Nonlinear Equations - Linearization
Things get worse when the equation is nonlinear. Consider first the 1D conserva-

tion law,
ut = fx, (13.46)

where f(u) is a given nonlinear flux function. Using the notation f n+1
j for f(un+1

j )
we can write backward Euler as

un+1
j − λ

2
(fn+1

j+1 − fn+1
j−1 ) = un

j . (13.47)

Thus at every timestep we get a system of nonlinear equations. It is not even clear
how to extend the δ-formulation.

Suppose we set δj = un+1
j − un

j and rewrite (13.47) as

δj−
λ

2
(f(un

j+1+δj+1)−f(un
j+1))+

λ

2
(f(un

j−1+δj−1)−f(un
j−1)) =

λ

2
(fn

j+1−fn
j−1). (13.48)

In this case we would still have a system of nonlinear equations. In order to get a
system of linear equations, assume that δj will be small compared to un

j and linearize
(13.48). For example, we can linearize the first difference involving f in (13.48) by

f(un
j+1 + δj+1) − f(un

j+1) ' f ′(un
j+1)δj+1.

The linearized system of equations becomes

δj −
λ

2
f ′(un

j+1)δj+1 +
λ

2
f ′(un

j−1)δj−1 =
λ

2
(fn

j+1 − fn
j−1). (13.49)

We now have a linear system of equations for ~δ with the nice property that at steady
state the solution solves the finite approximation to the steady state PDE. One dis-
advantage of this approach is that the tridiagonal system must be reformed at each
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timestep because the coefficients depend on n, however this is more of a programming
problem than a computational problem.

Now we can reformulate (13.49) to relate it to something that you may be more
familiar with. Suppose you get rid of λ in (13.49), i.e., write

λ =
∆t

h
,

and explicitly divide by ∆t. Suppose you then consider what happens when ∆t → ∞.
You can see that in this case you will get exactly Newton’s method for the nonlinear
steady state equation

fx = 0. (13.50)

This is both good and bad.
Sometimes you are solving the time dependent equation only to get to the steady

state, i.e., the solution to (13.50). In this case you are not interested in accuracy for
the transient, you want to use large timesteps, but more importantly you want to get
to steady state with the fewest number of timesteps. If your initial data is close to
the steady state solution you know that Newton’s method converges very rapidly to
the solution, i.e., a small number of iterations. This is good. Note that looking at the
problem this way, the timestep has no meaning. It is just another way of counting
the iterations. When you use large timesteps you can not claim any accuracy on the
transient. It is just an iterative method to solve (13.50).

On the other hand you should know that Newton’s method tends to be very
sensitive to the initial conditions and if you don’t have a good initial condition the
method may diverge and even blow up. This says that the scheme (13.48) need not
be convergent for large timesteps and will generally not be unconditionally stable.
Thus linearization will generally introduce stability problems. This is bad.

If you have an m × m system, linearization involves computing the Jacobian ma-
trix. For 2D problems you would often use linearization combined with approximate
factorization. Nonlinear 2D systems are very non trivial numerical problems and
there are other approaches, which we will not go into, including both perturbations
of what we have described above as well as radically different methods such as multi-
grid methods.

Anisotropy
We have previously analyzed two basic sources of numerical errors, dissipation

and dispersion. In addition to these errors there is an additional source of errors in
two dimensions. This is anisotropy, which is due to the fact that waves traveling in
different directions can have different errors.

To see how this works consider the equation,

ut = ux + uy, (13.51)
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and suppose you discretize only in space,

dvj,k

dt
=

vj+1,k(t) − vj−1,k(t)

2h
+

vj,k+1(t) − vj,k−1(t)

2h
(13.52)

In (13.52) we have assumed that the x−spacing is equal to the y−spacing for sim-
plicity.

Now assume that we have a wave traveling in the direction α. This corresponds
to a spatial dependence of the form exp(i | k | (cos(α)x + sin(α)y). Plug in a wave of
the form

u(t, x) = exp(iωt) exp(i | k | (cos(α)x + sin(α)y),

into (13.51). It is easy to see that

ω =| k | (cos(α) + sin(α)). (13.53)

(13.53) describes the analytic dispersion relation for the two dimensional partial dif-
ferential equation (13.51). Note that ω strongly depends on the direction in which
the wave is traveling (α).

Now consider what happens for the numerical approximation (13.52). Set

v(t) = exp(iωht) exp(i | k | (cos(α)x + sin(α)y),

where ωh now comes from the dispersion relation of the difference approximation
(13.52). For simplicity of notation set kx =| k | cos(α) and ky =| k | sin(α), i.e.,
the wave numbers in the x− and y− directions respectively. By what we have done
many times before we know that central differences in the x−direction correspond to
2i sin(| k | cos(α)h) and similarly for the y direction. We then have

ωh =
sin(kxh)

h
+

sin(kyh)

h
. (13.54)

Note that both ω and ωh depend on α.
Now exactly as we did in the 1D case we can compute the phase error,

ω − ωh = kx(1 −
sin(kxh)

kxh
) + ky(1 −

sin(kyh)

kyh
). (13.55)

Since we are only interested in waves which are small we can expand (13.55) for small
values of kxh and kyh. We now replace kx by | k | cos(α) and ky by | k | sin(α) to get

ω − ωh ' | k |3
6

(cos(α)3 + sin(α)3) (13.56)

(13.56) is a measure of anisotropy. It says that the error depends on the direction of
the wave (α). The angular dependence is given by

f(α) = cos(α)3 + sin(α)3. (13.57)
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Note that the angular dependence of the error is different from the angular dependence
of ω (i.e., of the exact solution). This is an effect of numerical anisotropy. Waves
traveling in different directions have different errors. It is easy to see that (13.57) is
maximized for α = 0 and α = π/2. Thus waves that travel along the grid have the
worst errors. (13.57) is minimized for α = π/4.

Note that for a difference scheme, e.g., leap frog, MacCormack or split MacCor-
mack, it is necessary to work out the dispersion relation for the zs that you get from
the von Neumann analysis. The analysis can be very complicated. The important
thing for you to remember is that the numerical error will in general depend on the
direction of wave propagation (anisotropy) and the exact dependence will differ from
scheme to scheme. Often (but not always) waves that propagate along the grid have
the worst errors. Note that for a wave propagating in the x direction, the wave num-
ber in the x−direction is | k |, while for a wave number propagating at 45◦ the wave
number in the x−direction is | k |

√
2/2. Thus the x− (and y−) wave numbers are

reduced for waves traveling skew to the grid, explaining why you generally expect
smaller errors for such waves.

Boundary Conditions in 2 Dimensions
As a final 2D topic we consider boundary conditions. Consider the system

~ut = A~ux + B~uy, (13.58)

where A and B are m×m matrices. As part of the definition of hyperbolicity it follows
that A and B have m real and distinct eigenvalues. Suppose you are working in a
rectangular domain. The procedure to determine the number and type of boundary
conditions is to neglect tangential derivatives and look only at the equation for the
normal derivatives. Thus if, for example, one of your boundaries is the line x = 0 you
should neglect the y−derivatives and determine the number and type of boundary
conditions only from the equation

~ut = A~ux.

Do the same thing for the numerical treatment, i.e., the characteristic boundary
treatment. Thus the general rule, neglect the transverse derivatives and consider
only the normal derivatives.

There is no general procedure for corners. They can give you problems. One
approach is to impose both the boundary conditions that you would get from the
x−boundaries and the boundary conditions that you would get from the y−boundaries.
Expect inaccuracies and oscillations near corners. In some cases you can get instabil-
ities. In this case use of a dissipative scheme can help.
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